Prajila Alayadan, Avichal Kumar, Sanjana S Prakash, Babiker Bashir, V Bhagya, S Narasimha Murthy, H N Shivakumar
{"title":"Development, <i>in vitro</i> and <i>in vivo</i> evaluation of film forming solutions for transdermal drug delivery of Zaltoprofen.","authors":"Prajila Alayadan, Avichal Kumar, Sanjana S Prakash, Babiker Bashir, V Bhagya, S Narasimha Murthy, H N Shivakumar","doi":"10.1080/09205063.2024.2443332","DOIUrl":null,"url":null,"abstract":"<p><p>Zaltoprofen (ZAL) is a non-steroidal anti-inflammatory drug (NSAID) with a short half-life (∼2.8 h) due to extensive first pass metabolism. In this context, 16 different polymeric film forming solutions (PFFS) of ZAL were developed using different grades of Eudragits, Polyvinylpyrrolidones, Kollicoat MAE 100 P and Hydroxypropyl cellulose as film formers, and polyethylene glycol 400 as a plasticizer in equal parts of ethanol and isopropyl alcohol used as solvents. Of these solutions, F13 composed of Kollicoat MAE 100 P emerged as an optimal PFFS as it quickly formed a saturated film (10.25 ± 0.75 min) that displayed low drying time (3.00 ± 0.46 min), and high <i>in vitro</i> adhesion (2.67 ± 0.58). <i>Ex vivo</i> permeation studies conducted in Franz diffusion cell across porcine skin indicated that F13 displayed significantly higher (<i>p</i> < 0.001) steady state flux (8.64 ± 1.72 µg.cm<sup>-2</sup>.h<sup>-1</sup>), shorter lag time (∼3 h) and better skin content (2.55 ± 0.62 µg/mg) compared to other PFFS. Fourier Transform Infrared Spectroscopy (FT-IR) proved the chemical integrity of ZAL in polymeric film formed from F13, while Differential scanning calorimetry (DSC) and X-ray Diffractometry (XRD) proved the \"anti-recrystallization potential\" of PFFS. Anti-inflammatory studies in rats indicated that F13 significantly inhibited (ANOVA, <i>p</i> < 0.001) carrageenan induced paw edema for nearly 12 h compared to topical diclofenac used as standard. In addition, significantly elevated (ANOVA, <i>p</i> < 0.001) analgesic effect was noted in the hot plate test in rats treated with F13 compared to the standard for 12 h proving the superior efficacy of F13. Thus, PFFS by virtue of \"<i>in situ</i> evaporative metamorphosis\" induced supersaturation can be an attractive platform to deliver ZAL transdermally.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-24"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2024.2443332","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Zaltoprofen (ZAL) is a non-steroidal anti-inflammatory drug (NSAID) with a short half-life (∼2.8 h) due to extensive first pass metabolism. In this context, 16 different polymeric film forming solutions (PFFS) of ZAL were developed using different grades of Eudragits, Polyvinylpyrrolidones, Kollicoat MAE 100 P and Hydroxypropyl cellulose as film formers, and polyethylene glycol 400 as a plasticizer in equal parts of ethanol and isopropyl alcohol used as solvents. Of these solutions, F13 composed of Kollicoat MAE 100 P emerged as an optimal PFFS as it quickly formed a saturated film (10.25 ± 0.75 min) that displayed low drying time (3.00 ± 0.46 min), and high in vitro adhesion (2.67 ± 0.58). Ex vivo permeation studies conducted in Franz diffusion cell across porcine skin indicated that F13 displayed significantly higher (p < 0.001) steady state flux (8.64 ± 1.72 µg.cm-2.h-1), shorter lag time (∼3 h) and better skin content (2.55 ± 0.62 µg/mg) compared to other PFFS. Fourier Transform Infrared Spectroscopy (FT-IR) proved the chemical integrity of ZAL in polymeric film formed from F13, while Differential scanning calorimetry (DSC) and X-ray Diffractometry (XRD) proved the "anti-recrystallization potential" of PFFS. Anti-inflammatory studies in rats indicated that F13 significantly inhibited (ANOVA, p < 0.001) carrageenan induced paw edema for nearly 12 h compared to topical diclofenac used as standard. In addition, significantly elevated (ANOVA, p < 0.001) analgesic effect was noted in the hot plate test in rats treated with F13 compared to the standard for 12 h proving the superior efficacy of F13. Thus, PFFS by virtue of "in situ evaporative metamorphosis" induced supersaturation can be an attractive platform to deliver ZAL transdermally.
期刊介绍:
The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels.
The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.