Comparative analysis of stomatal pore instance segmentation: Mask R-CNN vs. YOLOv8 on Phenomics Stomatal dataset.

IF 4.1 2区 生物学 Q1 PLANT SCIENCES
Frontiers in Plant Science Pub Date : 2024-12-06 eCollection Date: 2024-01-01 DOI:10.3389/fpls.2024.1414849
Thanh Tuan Thai, Ki-Bon Ku, Anh Tuan Le, San Su Min Oh, Ngo Hoang Phan, In-Jung Kim, Yong Suk Chung
{"title":"Comparative analysis of stomatal pore instance segmentation: Mask R-CNN vs. YOLOv8 on Phenomics Stomatal dataset.","authors":"Thanh Tuan Thai, Ki-Bon Ku, Anh Tuan Le, San Su Min Oh, Ngo Hoang Phan, In-Jung Kim, Yong Suk Chung","doi":"10.3389/fpls.2024.1414849","DOIUrl":null,"url":null,"abstract":"<p><p>This study conducts a rigorous comparative analysis between two cutting-edge instance segmentation methods, Mask R-CNN and YOLOv8, focusing on stomata pore analysis. A novel dataset specifically tailored for stomata pore instance segmentation, named PhenomicsStomata, was introduced. This dataset posed challenges such as low resolution and image imperfections, prompting the application of advanced preprocessing techniques, including image enhancement using the Lucy-Richardson Algorithm. The models underwent comprehensive evaluation, considering accuracy, precision, and recall as key parameters. Notably, YOLOv8 demonstrated superior performance over Mask R-CNN, particularly in accurately calculating stomata pore dimensions. Beyond this comparative study, the implications of our findings extend across diverse biological research, providing a robust foundation for advancing our understanding of plant physiology. Furthermore, the preprocessing enhancements offer valuable insights for refining image analysis techniques, showcasing the potential for broader applications in scientific domains. This research marks a significant stride in unraveling the complexities of plant structures, offering both theoretical insights and practical applications in scientific research.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"15 ","pages":"1414849"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659011/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2024.1414849","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study conducts a rigorous comparative analysis between two cutting-edge instance segmentation methods, Mask R-CNN and YOLOv8, focusing on stomata pore analysis. A novel dataset specifically tailored for stomata pore instance segmentation, named PhenomicsStomata, was introduced. This dataset posed challenges such as low resolution and image imperfections, prompting the application of advanced preprocessing techniques, including image enhancement using the Lucy-Richardson Algorithm. The models underwent comprehensive evaluation, considering accuracy, precision, and recall as key parameters. Notably, YOLOv8 demonstrated superior performance over Mask R-CNN, particularly in accurately calculating stomata pore dimensions. Beyond this comparative study, the implications of our findings extend across diverse biological research, providing a robust foundation for advancing our understanding of plant physiology. Furthermore, the preprocessing enhancements offer valuable insights for refining image analysis techniques, showcasing the potential for broader applications in scientific domains. This research marks a significant stride in unraveling the complexities of plant structures, offering both theoretical insights and practical applications in scientific research.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Plant Science
Frontiers in Plant Science PLANT SCIENCES-
CiteScore
7.30
自引率
14.30%
发文量
4844
审稿时长
14 weeks
期刊介绍: In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches. Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信