{"title":"A lightweight MHDI-DETR model for detecting grape leaf diseases.","authors":"Zilong Fu, Lifeng Yin, Can Cui, Yi Wang","doi":"10.3389/fpls.2024.1499911","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate diagnosis of grape leaf diseases is critical in agricultural production, yet existing detection techniques face challenges in achieving model lightweighting while ensuring high accuracy. In this study, a real-time, end-to-end, lightweight grape leaf disease detection model, MHDI-DETR, based on an improved RT-DETR architecture, is presented to address these challenges. The original residual backbone network was improved using the MobileNetv4 network, significantly reducing the model's computational requirements and complexity. Additionally, a lightSFPN feature fusion structure is presented, combining the Hierarchical Scale Feature Pyramid Network with the Dilated Reparam Block structure design from the UniRepLKNet network. This structure is designed to overcome the challenges of capturing complex high-level and subtle low-level features, and it uses Efficient Local Attention to focus more efficiently on regions of interest, thereby enhancing the model's ability to detect complex targets while improving accuracy and inference speed. Finally, the integration of GIou and Focaler-IoU into Focaler-GIoU enhances detection accuracy and convergence speed for small targets by focusing more effectively on both simple and difficult samples. The findings from the experiments suggest that The MHDI-DETR model results in a 56% decrease in parameters and a 49% reduction in floating-point operations, respectively, compared with the RT-DETR model, in terms of accuracy, the model achieved precision rates of 96.9%, 92.6%, and 72.5% for accuracy, mAP50, and mAP50:95, respectively. Compared with the RT-DETR model, these represent improvements of 1.9%, 1.2%, and 1.2%. Overall, the MHDI-DETR model surpasses the RT-DETR and other mainstream detection models in both detection accuracy and degree of lightness, achieving dual optimization in efficiency and accuracy, and providing an efficient technical solution for automated agricultural disease management.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"15 ","pages":"1499911"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659005/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2024.1499911","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate diagnosis of grape leaf diseases is critical in agricultural production, yet existing detection techniques face challenges in achieving model lightweighting while ensuring high accuracy. In this study, a real-time, end-to-end, lightweight grape leaf disease detection model, MHDI-DETR, based on an improved RT-DETR architecture, is presented to address these challenges. The original residual backbone network was improved using the MobileNetv4 network, significantly reducing the model's computational requirements and complexity. Additionally, a lightSFPN feature fusion structure is presented, combining the Hierarchical Scale Feature Pyramid Network with the Dilated Reparam Block structure design from the UniRepLKNet network. This structure is designed to overcome the challenges of capturing complex high-level and subtle low-level features, and it uses Efficient Local Attention to focus more efficiently on regions of interest, thereby enhancing the model's ability to detect complex targets while improving accuracy and inference speed. Finally, the integration of GIou and Focaler-IoU into Focaler-GIoU enhances detection accuracy and convergence speed for small targets by focusing more effectively on both simple and difficult samples. The findings from the experiments suggest that The MHDI-DETR model results in a 56% decrease in parameters and a 49% reduction in floating-point operations, respectively, compared with the RT-DETR model, in terms of accuracy, the model achieved precision rates of 96.9%, 92.6%, and 72.5% for accuracy, mAP50, and mAP50:95, respectively. Compared with the RT-DETR model, these represent improvements of 1.9%, 1.2%, and 1.2%. Overall, the MHDI-DETR model surpasses the RT-DETR and other mainstream detection models in both detection accuracy and degree of lightness, achieving dual optimization in efficiency and accuracy, and providing an efficient technical solution for automated agricultural disease management.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.