Deep learning models for MRI-based clinical decision support in cervical spine degenerative diseases.

IF 3.2 3区 医学 Q2 NEUROSCIENCES
Frontiers in Neuroscience Pub Date : 2024-12-06 eCollection Date: 2024-01-01 DOI:10.3389/fnins.2024.1501972
Kai-Yu Li, Zhe-Yang Lu, Yu-Han Tian, Xiao-Peng Liu, Ye-Kai Zhang, Jia-Wei Qiu, Hua-Lin Li, Yu-Long Zhang, Jia-Wei Huang, Hao-Bo Ye, Nai Feng Tian
{"title":"Deep learning models for MRI-based clinical decision support in cervical spine degenerative diseases.","authors":"Kai-Yu Li, Zhe-Yang Lu, Yu-Han Tian, Xiao-Peng Liu, Ye-Kai Zhang, Jia-Wei Qiu, Hua-Lin Li, Yu-Long Zhang, Jia-Wei Huang, Hao-Bo Ye, Nai Feng Tian","doi":"10.3389/fnins.2024.1501972","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The purpose of our study is to develop a deep learning (DL) model based on MRI and analyze its consistency with the treatment recommendations for degenerative cervical spine disorders provided by the spine surgeons at our hospital.</p><p><strong>Methods: </strong>In this study, MRI of patients who were hospitalized for cervical spine degenerative disorders at our hospital from July 2023 to July 2024 were primarily collected. The dataset was divided into a training set, a validation set, and an external validation set. Four versions of the DL model were constructed. The external validation set was used to assess the consistency between the DL model and spine surgeons' recommendations about indication of cervical spine surgery regarding the dataset.</p><p><strong>Results: </strong>This study collected a total of 756 MR images from 189 patients. The external validation set included 30 patients and a total of 120 MR images, consisting of 43 images for grade 0, 20 images for grade 1, and 57 images for grade 2. The region of interest (ROI) detection model completed the ROI detection task perfectly. For the binary classification (grades 0 and 1, 2), DL version 1 showed the best consistency with the spine surgeons, achieving a Cohen's Kappa value of 0.874. DL version 4 also achieved nearly perfect consistency, with a Cohen's Kappa value of 0.811. For the three-class classification, DL version 1 demonstrated the best consistency with the spine surgeons, achieving a Cohen's Kappa value of 0.743, while DL version 2 and DL version 4 also showed substantial consistency, with Cohen's Kappa values of 0.615 and 0.664, respectively.</p><p><strong>Conclusion: </strong>We initially developed deep learning algorithms that can provide clinical recommendations based on cervical spine MRI. The algorithm shows substantial consistency with experienced spine surgeons.</p>","PeriodicalId":12639,"journal":{"name":"Frontiers in Neuroscience","volume":"18 ","pages":"1501972"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659285/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnins.2024.1501972","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: The purpose of our study is to develop a deep learning (DL) model based on MRI and analyze its consistency with the treatment recommendations for degenerative cervical spine disorders provided by the spine surgeons at our hospital.

Methods: In this study, MRI of patients who were hospitalized for cervical spine degenerative disorders at our hospital from July 2023 to July 2024 were primarily collected. The dataset was divided into a training set, a validation set, and an external validation set. Four versions of the DL model were constructed. The external validation set was used to assess the consistency between the DL model and spine surgeons' recommendations about indication of cervical spine surgery regarding the dataset.

Results: This study collected a total of 756 MR images from 189 patients. The external validation set included 30 patients and a total of 120 MR images, consisting of 43 images for grade 0, 20 images for grade 1, and 57 images for grade 2. The region of interest (ROI) detection model completed the ROI detection task perfectly. For the binary classification (grades 0 and 1, 2), DL version 1 showed the best consistency with the spine surgeons, achieving a Cohen's Kappa value of 0.874. DL version 4 also achieved nearly perfect consistency, with a Cohen's Kappa value of 0.811. For the three-class classification, DL version 1 demonstrated the best consistency with the spine surgeons, achieving a Cohen's Kappa value of 0.743, while DL version 2 and DL version 4 also showed substantial consistency, with Cohen's Kappa values of 0.615 and 0.664, respectively.

Conclusion: We initially developed deep learning algorithms that can provide clinical recommendations based on cervical spine MRI. The algorithm shows substantial consistency with experienced spine surgeons.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Neuroscience
Frontiers in Neuroscience NEUROSCIENCES-
CiteScore
6.20
自引率
4.70%
发文量
2070
审稿时长
14 weeks
期刊介绍: Neural Technology is devoted to the convergence between neurobiology and quantum-, nano- and micro-sciences. In our vision, this interdisciplinary approach should go beyond the technological development of sophisticated methods and should contribute in generating a genuine change in our discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信