Can sexual conflict drive transitions to asexuality? Female resistance to fertilization in a facultatively parthenogenetic insect.

IF 3.1 2区 环境科学与生态学 Q2 ECOLOGY
Evolution Pub Date : 2024-12-23 DOI:10.1093/evolut/qpae187
Daniela Wilner, Jigmidmaa Boldbaatar, Soleille M Miller, Nathan W Burke, Russell Bonduriansky
{"title":"Can sexual conflict drive transitions to asexuality? Female resistance to fertilization in a facultatively parthenogenetic insect.","authors":"Daniela Wilner, Jigmidmaa Boldbaatar, Soleille M Miller, Nathan W Burke, Russell Bonduriansky","doi":"10.1093/evolut/qpae187","DOIUrl":null,"url":null,"abstract":"<p><p>Facultatively parthenogenetic animals could help reveal the role of sexual conflict in the evolution of sex. Although each female can reproduce both sexually (producing sons and daughters from fertilized eggs) and asexually (typically producing only daughters from unfertilized eggs), these animals often form distinct sexual and asexual populations. We hypothesized that asexual populations are maintained through female resistance as well as the decay of male traits. We tested this via experimental crosses between individuals descended from multiple natural sexual and asexual populations of the facultatively parthenogenic stick-insect Megacrania batesii. We found that male-paired females descended from asexual populations produced strongly female-biased offspring sex-ratios resulting from reduced fertilization rates. This effect was not driven by incompatibility between diverged genotypes but, rather, by both genotypic and maternal effects on fertilization rate. Furthermore, when females from asexual populations mated and produced sons, those sons had poor fertilization success when paired with resistant females, consistent with male trait decay. Our results suggest that resistance to fertilization resulting from both maternal and genotypic effects, along with male sexual trait decay, can hinder the invasion of asexual populations by males. Sexual conflict could thus play a role in the establishment and maintenance of asexual populations.</p>","PeriodicalId":12082,"journal":{"name":"Evolution","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/evolut/qpae187","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Facultatively parthenogenetic animals could help reveal the role of sexual conflict in the evolution of sex. Although each female can reproduce both sexually (producing sons and daughters from fertilized eggs) and asexually (typically producing only daughters from unfertilized eggs), these animals often form distinct sexual and asexual populations. We hypothesized that asexual populations are maintained through female resistance as well as the decay of male traits. We tested this via experimental crosses between individuals descended from multiple natural sexual and asexual populations of the facultatively parthenogenic stick-insect Megacrania batesii. We found that male-paired females descended from asexual populations produced strongly female-biased offspring sex-ratios resulting from reduced fertilization rates. This effect was not driven by incompatibility between diverged genotypes but, rather, by both genotypic and maternal effects on fertilization rate. Furthermore, when females from asexual populations mated and produced sons, those sons had poor fertilization success when paired with resistant females, consistent with male trait decay. Our results suggest that resistance to fertilization resulting from both maternal and genotypic effects, along with male sexual trait decay, can hinder the invasion of asexual populations by males. Sexual conflict could thus play a role in the establishment and maintenance of asexual populations.

性冲突会导致向无性恋的转变吗?兼性孤雌生殖昆虫的雌性受精抗性。
兼性孤雌生殖动物可以帮助揭示性冲突在性进化中的作用。虽然每只雌性都可以有性繁殖(从受精卵中产生儿子和女儿)和无性繁殖(通常只从未受精卵中产生女儿),但这些动物通常形成不同的有性和无性种群。我们假设无性种群是通过雌性的抵抗和雄性特征的衰退来维持的。我们通过多个自然有性和无性繁殖的兼性孤雌棍虫种群的后代进行实验杂交来验证这一点。我们发现,来自无性种群的雄性配对雌性后代由于受精率降低而产生了强烈的雌性偏倚后代性别比例。这种效应不是由不同基因型之间的不亲和性驱动的,而是由基因型和母体对受精率的影响共同驱动的。此外,当来自无性种群的雌性交配并产生儿子时,这些儿子在与抗性雌性配对时受精成功率较低,这与雄性特征衰减相一致。我们的研究结果表明,母系效应和基因型效应导致的受精抗性,以及雄性性性状的衰退,可能会阻碍雄性无性种群的入侵。因此,性冲突可能在无性种群的建立和维持中发挥作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Evolution
Evolution 环境科学-进化生物学
CiteScore
5.00
自引率
9.10%
发文量
0
审稿时长
3-6 weeks
期刊介绍: Evolution, published for the Society for the Study of Evolution, is the premier publication devoted to the study of organic evolution and the integration of the various fields of science concerned with evolution. The journal presents significant and original results that extend our understanding of evolutionary phenomena and processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信