Comparing the growth kinetics and characteristics of Wharton's jelly derived mesenchymal stem cells expanded using different culture mediums.

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Cytotechnology Pub Date : 2025-02-01 Epub Date: 2024-12-19 DOI:10.1007/s10616-024-00682-7
Muhammad Najib Fathi Hassan, Muhammad Dain Yazid, Mohd Heikal Bin Mohd Yunus, Yogeswaran Lokanathan, Min Hwei Ng, Ruszymah Bt Hj Idrus, Yee Loong Tang, See Nguan Ng, Jia Xian Law
{"title":"Comparing the growth kinetics and characteristics of Wharton's jelly derived mesenchymal stem cells expanded using different culture mediums.","authors":"Muhammad Najib Fathi Hassan, Muhammad Dain Yazid, Mohd Heikal Bin Mohd Yunus, Yogeswaran Lokanathan, Min Hwei Ng, Ruszymah Bt Hj Idrus, Yee Loong Tang, See Nguan Ng, Jia Xian Law","doi":"10.1007/s10616-024-00682-7","DOIUrl":null,"url":null,"abstract":"<p><p>Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) can be isolated from umbilical cords which is abundant and easy to obtain. Due to their potent immunosuppressive properties, multilineage differentiation potential, and lack of ethical issues, WJ-MSCs are considered a promising candidate for therapeutic applications. However, large-scale in vitro expansion is necessary to obtain enough cells for therapeutic purposes. Therefore, this study aimed to optimize cell culture conditions and determine the characteristics of expanded WJ-MSCs. WJ-MSCs were seeded in 6-well plates at a density of 5000 cells/cm<sup>2</sup> and cultured with different mediums, including DMEM-LG+10% FBS, DMEM-LG+10% HPL, serum-free commercial medium 1, serum-free GMP grade commercial medium 2, and HPL supplemented commercial medium 3. The cell morphology and growth kinetics were compared, and the three most suitable mediums were selected for further experiments. WJ-MSCs were then cultured in the selected mediums at seeding densities ranging from 1000 to 5000 cells/cm<sup>2</sup>, and cell growth kinetics were analysed. WJ-MSCs cultured in the selected mediums were characterized by their immunophenotype, tri-lineage differentiation potential and immunosuppression property. WJ-MSCs cultured with DMEM-LG+10% HPL, commercial medium 1 and commercial medium 2 showed smaller size, significantly higher cell yield, and shorter population doubling time than those cultured in other mediums. Hence, these three mediums were selected for further experiments. Only DMEM-LG + 10% HPL medium maintained high cell yields (1.48 ± 0.14 × 10<sup>6</sup> with bFGF and 1.56 ± 0.17 × 10<sup>6</sup> without bFGF) at the lowest seeding density tested. However, WJ-MSCs cultured in all three mediums expressed the MSC surface markers, were able to suppress PBMC proliferation, and could differentiate into adipogenic, chondrogenic and osteogenic lineages. In summary, DMEM-LG+10% HPL is the best medium for WJ-MSC expansion, as it provides the highest cell yield without compromising cell characteristics and functionality. The potential of this medium for large-scale expansion using a bioreactor or multilayered flask should be investigated in the future.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"77 1","pages":"24"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659549/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-024-00682-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) can be isolated from umbilical cords which is abundant and easy to obtain. Due to their potent immunosuppressive properties, multilineage differentiation potential, and lack of ethical issues, WJ-MSCs are considered a promising candidate for therapeutic applications. However, large-scale in vitro expansion is necessary to obtain enough cells for therapeutic purposes. Therefore, this study aimed to optimize cell culture conditions and determine the characteristics of expanded WJ-MSCs. WJ-MSCs were seeded in 6-well plates at a density of 5000 cells/cm2 and cultured with different mediums, including DMEM-LG+10% FBS, DMEM-LG+10% HPL, serum-free commercial medium 1, serum-free GMP grade commercial medium 2, and HPL supplemented commercial medium 3. The cell morphology and growth kinetics were compared, and the three most suitable mediums were selected for further experiments. WJ-MSCs were then cultured in the selected mediums at seeding densities ranging from 1000 to 5000 cells/cm2, and cell growth kinetics were analysed. WJ-MSCs cultured in the selected mediums were characterized by their immunophenotype, tri-lineage differentiation potential and immunosuppression property. WJ-MSCs cultured with DMEM-LG+10% HPL, commercial medium 1 and commercial medium 2 showed smaller size, significantly higher cell yield, and shorter population doubling time than those cultured in other mediums. Hence, these three mediums were selected for further experiments. Only DMEM-LG + 10% HPL medium maintained high cell yields (1.48 ± 0.14 × 106 with bFGF and 1.56 ± 0.17 × 106 without bFGF) at the lowest seeding density tested. However, WJ-MSCs cultured in all three mediums expressed the MSC surface markers, were able to suppress PBMC proliferation, and could differentiate into adipogenic, chondrogenic and osteogenic lineages. In summary, DMEM-LG+10% HPL is the best medium for WJ-MSC expansion, as it provides the highest cell yield without compromising cell characteristics and functionality. The potential of this medium for large-scale expansion using a bioreactor or multilayered flask should be investigated in the future.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cytotechnology
Cytotechnology 生物-生物工程与应用微生物
CiteScore
4.10
自引率
0.00%
发文量
49
审稿时长
6-12 weeks
期刊介绍: The scope of the Journal includes: 1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products. 2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools. 3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research. 4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy. 5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信