Wei Lu, Yuting Yang, Shunxiang Gao, Jihong Wu, Xinghuai Sun
{"title":"Taurine mechanism in preventing retinal cell damage from acute ocular hypertension through GTPBP3 regulation.","authors":"Wei Lu, Yuting Yang, Shunxiang Gao, Jihong Wu, Xinghuai Sun","doi":"10.1016/j.exer.2024.110222","DOIUrl":null,"url":null,"abstract":"<p><p>We aimed to explore the protective effects and underlying mechanisms of taurine on retinal cells during acute ocular hypertension (AOH)-induced damage. Retinal morphology, apoptosis, mitochondrial structure, electroretinography, expression of GTP binding protein 3 (GTPBP3), and molecules in the unfolded protein response (UPR) were examined in an AOH mouse model and wild-type (WT) mice with or without intravitreal injection of taurine. For in vitro experiments, the GTPBP3 expression and endoplasmic reticulum (ER) stress were examined in R28 cell line under hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>)-induced damage or hypoxia/reoxygenation (H/R)-induced damage, with or without taurine pretreatment. Taurine pretreatment alleviated retinal damage caused by AOH modeling. The GTPBP3 expression level decreased after AOH injury, and taurine pretreatment reversed this reduction. Retinas with decreased GTPBP3 expression showed reduced retinal ganglion cell (RGC) function, which could be reversed by intravitreal taurine injection. In H<sub>2</sub>O<sub>2-</sub>, H/R-, and AOH-induced damage, UPR were activated and alleviated by taurine pretreatment. GTPBP3 knockdown in R28 cells also activated the UPR, which was alleviated by taurine. A UPR activator downregulated GTPBP3 levels in normal R28 cells, whereas a UPR inhibitor upregulated GTPBP3 levels in GTPBP3 knockdown R28 cells. In conclusion, this study provides important evidence that taurine prevents retinal cell damage in mice exposed to AOH and modulates GTPBP3 expression via the UPR pathway. Interventions targeting this mechanism can be used as potential therapeutic targets for AOH damage.</p>","PeriodicalId":12177,"journal":{"name":"Experimental eye research","volume":" ","pages":"110222"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental eye research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.exer.2024.110222","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We aimed to explore the protective effects and underlying mechanisms of taurine on retinal cells during acute ocular hypertension (AOH)-induced damage. Retinal morphology, apoptosis, mitochondrial structure, electroretinography, expression of GTP binding protein 3 (GTPBP3), and molecules in the unfolded protein response (UPR) were examined in an AOH mouse model and wild-type (WT) mice with or without intravitreal injection of taurine. For in vitro experiments, the GTPBP3 expression and endoplasmic reticulum (ER) stress were examined in R28 cell line under hydrogen peroxide (H2O2)-induced damage or hypoxia/reoxygenation (H/R)-induced damage, with or without taurine pretreatment. Taurine pretreatment alleviated retinal damage caused by AOH modeling. The GTPBP3 expression level decreased after AOH injury, and taurine pretreatment reversed this reduction. Retinas with decreased GTPBP3 expression showed reduced retinal ganglion cell (RGC) function, which could be reversed by intravitreal taurine injection. In H2O2-, H/R-, and AOH-induced damage, UPR were activated and alleviated by taurine pretreatment. GTPBP3 knockdown in R28 cells also activated the UPR, which was alleviated by taurine. A UPR activator downregulated GTPBP3 levels in normal R28 cells, whereas a UPR inhibitor upregulated GTPBP3 levels in GTPBP3 knockdown R28 cells. In conclusion, this study provides important evidence that taurine prevents retinal cell damage in mice exposed to AOH and modulates GTPBP3 expression via the UPR pathway. Interventions targeting this mechanism can be used as potential therapeutic targets for AOH damage.
期刊介绍:
The primary goal of Experimental Eye Research is to publish original research papers on all aspects of experimental biology of the eye and ocular tissues that seek to define the mechanisms of normal function and/or disease. Studies of ocular tissues that encompass the disciplines of cell biology, developmental biology, genetics, molecular biology, physiology, biochemistry, biophysics, immunology or microbiology are most welcomed. Manuscripts that are purely clinical or in a surgical area of ophthalmology are not appropriate for submission to Experimental Eye Research and if received will be returned without review.