{"title":"Mechanism of decolorization and degradation of direct brown D3G by a halo-thermophilic consortium.","authors":"Wenying Wang, Zuotao Zhang, Meichen Sun, Chenlai Li, Mengdi Yan, Chongyang Wang","doi":"10.1007/s00792-024-01376-w","DOIUrl":null,"url":null,"abstract":"<p><p>Azo dye wastewater has garnered significant attention from researchers because of its association with high-temperature, high-salt, and high-alkali conditions. In this study, consortium ZZ efficiently decolorized brown D3G under halophilic and thermophilic conditions. he results indicated that consortium ZZ, which was mainly dominated by Marinobacter, Bacillus, and Halomonas, was achieved decolorization rates ranging from 1 to 10% at temperatures between 40 °C and 50 °C, while maintaining a pH range of 7 to 10 for direct brown D3G degradation. Through the comprehensive utilization of UV-vis spectral analysis, Fourier transform infrared (FTIR), gas chromatography mass spectrometric (GC-MS) techniques, as well as metagenomic analysis, the decolorization and degradation pathway of direct brown by consortium ZZ was proposed. The azo dye reductase, lignin peroxidase, and laccase were also highly expressed in the decolorization process. Additionally, phytotoxicity tests using seeds of Cucumis sativus and Oryza sativa revealed that the intermediates generated showed no significant toxicity compared with distilled water. This investigation elucidated the pivotal contribution of consortium ZZ to azo dye degradation and provided novel theoretical insights along with practical guidance for azo dye treatment at halo-thermophilic conditions.</p>","PeriodicalId":12302,"journal":{"name":"Extremophiles","volume":"29 1","pages":"11"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extremophiles","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00792-024-01376-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Azo dye wastewater has garnered significant attention from researchers because of its association with high-temperature, high-salt, and high-alkali conditions. In this study, consortium ZZ efficiently decolorized brown D3G under halophilic and thermophilic conditions. he results indicated that consortium ZZ, which was mainly dominated by Marinobacter, Bacillus, and Halomonas, was achieved decolorization rates ranging from 1 to 10% at temperatures between 40 °C and 50 °C, while maintaining a pH range of 7 to 10 for direct brown D3G degradation. Through the comprehensive utilization of UV-vis spectral analysis, Fourier transform infrared (FTIR), gas chromatography mass spectrometric (GC-MS) techniques, as well as metagenomic analysis, the decolorization and degradation pathway of direct brown by consortium ZZ was proposed. The azo dye reductase, lignin peroxidase, and laccase were also highly expressed in the decolorization process. Additionally, phytotoxicity tests using seeds of Cucumis sativus and Oryza sativa revealed that the intermediates generated showed no significant toxicity compared with distilled water. This investigation elucidated the pivotal contribution of consortium ZZ to azo dye degradation and provided novel theoretical insights along with practical guidance for azo dye treatment at halo-thermophilic conditions.
期刊介绍:
Extremophiles features original research articles, reviews, and method papers on the biology, molecular biology, structure, function, and applications of microbial life at high or low temperature, pressure, acidity, alkalinity, salinity, or desiccation; or in the presence of organic solvents, heavy metals, normally toxic substances, or radiation.