An intrinsic hierarchical, retinotopic organization of visual pulvinar connectivity in the human neonate.

IF 8.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Current Biology Pub Date : 2025-01-20 Epub Date: 2024-12-21 DOI:10.1016/j.cub.2024.11.042
Vladislav Ayzenberg, Chenjie Song, Michael J Arcaro
{"title":"An intrinsic hierarchical, retinotopic organization of visual pulvinar connectivity in the human neonate.","authors":"Vladislav Ayzenberg, Chenjie Song, Michael J Arcaro","doi":"10.1016/j.cub.2024.11.042","DOIUrl":null,"url":null,"abstract":"<p><p>The thalamus plays a crucial role in the development of the neocortex, with the pulvinar being particularly important for visual development due to its involvement in various functions that emerge early in infancy. The development of connections between the pulvinar and the cortex constrains its role in infant visual processing and the maturation of associated cortical networks. However, the extent to which adult-like pulvino-cortical pathways are present at birth remains largely unknown, limiting our understanding of how the thalamus may support early vision. To address this gap, we investigated the organization of pulvino-cortical connections in human neonates using probabilistic tractography analyses on diffusion imaging data. Our analyses identified white matter pathways between the pulvinar and areas across occipital, ventral, lateral, and dorsal visual cortices at birth. These pathways exhibited specificity in their connections within the pulvinar, reflecting both an intra-areal retinotopic organization and a hierarchical structure across areas of visual cortical pathways. This organization suggests that even at birth, the pulvinar could facilitate detailed processing of sensory information and communication between distinct processing pathways. Comparative analyses revealed that while the large-scale organization of pulvino-cortical connectivity in neonates mirrored that of adults, connectivity with the ventral visual cortex was less mature than other cortical pathways, consistent with the protracted development of the visual recognition pathway. These findings advance our understanding of the developmental trajectory of thalamocortical connections and provide a framework for how subcortical structures may support early perceptual abilities and scaffold the development of cortex.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":"300-314.e5"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2024.11.042","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The thalamus plays a crucial role in the development of the neocortex, with the pulvinar being particularly important for visual development due to its involvement in various functions that emerge early in infancy. The development of connections between the pulvinar and the cortex constrains its role in infant visual processing and the maturation of associated cortical networks. However, the extent to which adult-like pulvino-cortical pathways are present at birth remains largely unknown, limiting our understanding of how the thalamus may support early vision. To address this gap, we investigated the organization of pulvino-cortical connections in human neonates using probabilistic tractography analyses on diffusion imaging data. Our analyses identified white matter pathways between the pulvinar and areas across occipital, ventral, lateral, and dorsal visual cortices at birth. These pathways exhibited specificity in their connections within the pulvinar, reflecting both an intra-areal retinotopic organization and a hierarchical structure across areas of visual cortical pathways. This organization suggests that even at birth, the pulvinar could facilitate detailed processing of sensory information and communication between distinct processing pathways. Comparative analyses revealed that while the large-scale organization of pulvino-cortical connectivity in neonates mirrored that of adults, connectivity with the ventral visual cortex was less mature than other cortical pathways, consistent with the protracted development of the visual recognition pathway. These findings advance our understanding of the developmental trajectory of thalamocortical connections and provide a framework for how subcortical structures may support early perceptual abilities and scaffold the development of cortex.

一个内在的层次,视网膜组织的视觉丘脑连接在人类新生儿。
丘脑在新皮层的发育中起着至关重要的作用,而枕状核由于参与婴儿早期出现的各种功能,对视觉发育尤为重要。枕核和皮层之间连接的发展限制了枕核在婴儿视觉处理和相关皮层网络成熟中的作用。然而,成人样脑皮层通路在出生时的存在程度在很大程度上仍然未知,限制了我们对丘脑如何支持早期视力的理解。为了解决这一差距,我们利用扩散成像数据的概率神经束造影分析研究了人类新生儿脑枕皮层连接的组织。我们的分析确定了出生时枕部和枕部、腹侧、外侧和背侧视觉皮质区域之间的白质通路。这些通路在枕状核内的连接表现出特异性,反映了区域内视网膜组织和视觉皮层通路区域的分层结构。这种组织表明,即使在出生时,枕状核也可以促进对感觉信息的详细处理以及不同处理途径之间的交流。对比分析显示,虽然新生儿脑皮层-脑皮层连接的大规模组织反映了成人,但与腹侧视觉皮层的连接比其他皮层通路更不成熟,这与视觉识别通路的长期发育一致。这些发现促进了我们对丘脑皮质连接发育轨迹的理解,并为皮层下结构如何支持早期感知能力和支撑皮层发育提供了一个框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Biology
Current Biology 生物-生化与分子生物学
CiteScore
11.80
自引率
2.20%
发文量
869
审稿时长
46 days
期刊介绍: Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信