Resting state EEG delta-beta amplitude-amplitude coupling: a neural predictor of cortisol response under stress.

IF 3.1 3区 工程技术 Q2 NEUROSCIENCES
Cognitive Neurodynamics Pub Date : 2024-12-01 Epub Date: 2024-10-03 DOI:10.1007/s11571-024-10174-1
Xiaoyu Wang, Li Lin, Lei Zhan, Xianghong Sun, Zheng Huang, Liang Zhang
{"title":"Resting state EEG delta-beta amplitude-amplitude coupling: a neural predictor of cortisol response under stress.","authors":"Xiaoyu Wang, Li Lin, Lei Zhan, Xianghong Sun, Zheng Huang, Liang Zhang","doi":"10.1007/s11571-024-10174-1","DOIUrl":null,"url":null,"abstract":"<p><p>Stress is ubiquitous in daily life. Subcortical and cortical regions closely interact to respond to stress. Delta-beta cross-frequency coupling (CFC), believed to signify communication between different brain areas, can serve as a neural signature underlying the heterogeneity in stress responses. Nevertheless, the role of cross-frequency coupling in stress prediction has not received sufficient attention. To examine the predictive role of resting state delta-beta CFC across the whole scalp, we obtained amplitude-amplitude coupling (AAC) and phase-amplitude coupling (PAC) from 4-minute resting state EEG of seventy-three healthy participants. The Trier Social Stress Test (TSST) was administered on a separate day to induce stress. Salivary cortisol and heart rate were recorded to measure stress responses. Utilizing cluster-based permutation analysis, the results showed that delta-beta AAC was positively correlated with cortisol increase magnitude (cluster <i>t</i> = 26.012, <i>p</i> = .020) and cortisol AUCi (cluster <i>t</i> = 23.039, <i>p</i> = .022) over parietal-occipital areas, which means that individuals with a stronger within-subject AAC demonstrated a greater cortisol response. These results suggest that AAC could be a valuable biomarker for predicting neuroendocrine activity under stress. However, no association between PAC and stress responses was found. Additionally, we did not detect the predictive effect of power in the delta or beta frequency bands on stress responses, suggesting that delta-beta AAC provides unique insights beyond single-band power. These findings enhance our understanding of the neurophysiological mechanism underpinning individual differences in stress responses and offer promising biomarkers for stress assessment and the detection of stress-related disorders.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11571-024-10174-1.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"18 6","pages":"3995-4007"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655767/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10174-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Stress is ubiquitous in daily life. Subcortical and cortical regions closely interact to respond to stress. Delta-beta cross-frequency coupling (CFC), believed to signify communication between different brain areas, can serve as a neural signature underlying the heterogeneity in stress responses. Nevertheless, the role of cross-frequency coupling in stress prediction has not received sufficient attention. To examine the predictive role of resting state delta-beta CFC across the whole scalp, we obtained amplitude-amplitude coupling (AAC) and phase-amplitude coupling (PAC) from 4-minute resting state EEG of seventy-three healthy participants. The Trier Social Stress Test (TSST) was administered on a separate day to induce stress. Salivary cortisol and heart rate were recorded to measure stress responses. Utilizing cluster-based permutation analysis, the results showed that delta-beta AAC was positively correlated with cortisol increase magnitude (cluster t = 26.012, p = .020) and cortisol AUCi (cluster t = 23.039, p = .022) over parietal-occipital areas, which means that individuals with a stronger within-subject AAC demonstrated a greater cortisol response. These results suggest that AAC could be a valuable biomarker for predicting neuroendocrine activity under stress. However, no association between PAC and stress responses was found. Additionally, we did not detect the predictive effect of power in the delta or beta frequency bands on stress responses, suggesting that delta-beta AAC provides unique insights beyond single-band power. These findings enhance our understanding of the neurophysiological mechanism underpinning individual differences in stress responses and offer promising biomarkers for stress assessment and the detection of stress-related disorders.

Supplementary information: The online version contains supplementary material available at 10.1007/s11571-024-10174-1.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信