Jing Sun, Lin Zhu, Xiaojing Fang, Yong Tang, Yuci Xiao, Shaolei Jiang, Jianbang Lin, Yuantao Li
{"title":"Pupil dilation and behavior as complementary measures of fear response in Mice.","authors":"Jing Sun, Lin Zhu, Xiaojing Fang, Yong Tang, Yuci Xiao, Shaolei Jiang, Jianbang Lin, Yuantao Li","doi":"10.1007/s11571-024-10180-3","DOIUrl":null,"url":null,"abstract":"<p><p>The precise assessment of emotional states in animals under the combined influence of multiple stimuli remains a challenge in neuroscience research. In this study, multi-dimensional assessments, including high-precision pupil tracking and behavioral analysis, were conducted to investigate the combined effects of fear stimuli and drug manipulation on emotional responses in mice. Mice exposed to foot shocks showed typical freezing and flight behaviors, but neither of these measures could effectively distinguish between dexmedetomidine, isoflurane, and saline groups. In contrast, the change in pupil diameter clearly distinguished the groups. Our results showed that fear stimulation could induce significant pupil dilation, and dexmedetomidine-isoflurane combined stimulation could significantly inhibit this response, but isoflurane anesthesia alone could not achieve good inhibitory effect. This further demonstrates the superiority of pupil data in resolving the effects of combined stimuli on emotional states and the potential of multidimensional assessments to refine animal disease models and drug evaluations.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"18 6","pages":"4047-4054"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655993/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10180-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The precise assessment of emotional states in animals under the combined influence of multiple stimuli remains a challenge in neuroscience research. In this study, multi-dimensional assessments, including high-precision pupil tracking and behavioral analysis, were conducted to investigate the combined effects of fear stimuli and drug manipulation on emotional responses in mice. Mice exposed to foot shocks showed typical freezing and flight behaviors, but neither of these measures could effectively distinguish between dexmedetomidine, isoflurane, and saline groups. In contrast, the change in pupil diameter clearly distinguished the groups. Our results showed that fear stimulation could induce significant pupil dilation, and dexmedetomidine-isoflurane combined stimulation could significantly inhibit this response, but isoflurane anesthesia alone could not achieve good inhibitory effect. This further demonstrates the superiority of pupil data in resolving the effects of combined stimuli on emotional states and the potential of multidimensional assessments to refine animal disease models and drug evaluations.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.