Tumor cells induce neural DKK1 expression to promote MDSC infiltration and subsequent T cell suppression.

IF 4.4 2区 生物学 Q2 CELL BIOLOGY
Ruoyan Liu, Xiaotian Shi, Shuangshuang Qian, Zhonghao Sun, Hao Dai, Yongwei Wu, Shihui Cao, Jingtao Luo, Ze Zhang
{"title":"Tumor cells induce neural DKK1 expression to promote MDSC infiltration and subsequent T cell suppression.","authors":"Ruoyan Liu, Xiaotian Shi, Shuangshuang Qian, Zhonghao Sun, Hao Dai, Yongwei Wu, Shihui Cao, Jingtao Luo, Ze Zhang","doi":"10.1016/j.cellsig.2024.111576","DOIUrl":null,"url":null,"abstract":"<p><p>Nerves are often overlooked as key components of the tumor microenvironment. However, the molecular mechanisms underlying the reciprocal interactions between tumors and nerves remain largely unknown. In this study, we analyzed data from The Cancer Genome Atlas (TCGA) and identified a significant association between DKK1 expression and poor prognosis, as well as a correlation between DKK1 expression and myeloid-derived suppressor cell (MDSC) infiltration in head and neck squamous cell carcinoma (HNSCC) and pancreatic ductal adenocarcinoma (PDAC), two cancer types characterized by pronounced tumor-nerve interactions. Based on these findings, we hypothesize that tumors may induce DKK1 expression in nerves, and that nerve-derived DKK1 may promote MDSC infiltration and immunosuppression. To test this hypothesis, we employed a combination of experimental approaches, including in vitro co-culture of trigeminal ganglia with tumor cells, multiplex immunohistochemistry, and in vivo administration of DKK1 neutralizing antibodies. Our results indicate that tumor cells significantly induce DKK1 expression in ganglia in co-culture experiments. Additionally, in vivo orthotopic tumor models revealed that DKK1 levels were markedly elevated in both the plasma and ganglia of tumor-bearing mice. Neutralization DKK1 in vivo led to a reduction in MDSC levels and impaired MDSC-mediated T cell suppression in both HNSCC and PDAC orthotopic models. Furthermore, conditional deletion of neuronal DKK1 elucidated its role in MDSC infiltration and immune suppression. Our findings establish a novel molecular axis in which tumor cells modulate the immune microenvironment by inducing the expression of secreted proteins in nerves, thereby enriching the research landscape of the tumor microenvironment.</p>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":" ","pages":"111576"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular signalling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cellsig.2024.111576","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Nerves are often overlooked as key components of the tumor microenvironment. However, the molecular mechanisms underlying the reciprocal interactions between tumors and nerves remain largely unknown. In this study, we analyzed data from The Cancer Genome Atlas (TCGA) and identified a significant association between DKK1 expression and poor prognosis, as well as a correlation between DKK1 expression and myeloid-derived suppressor cell (MDSC) infiltration in head and neck squamous cell carcinoma (HNSCC) and pancreatic ductal adenocarcinoma (PDAC), two cancer types characterized by pronounced tumor-nerve interactions. Based on these findings, we hypothesize that tumors may induce DKK1 expression in nerves, and that nerve-derived DKK1 may promote MDSC infiltration and immunosuppression. To test this hypothesis, we employed a combination of experimental approaches, including in vitro co-culture of trigeminal ganglia with tumor cells, multiplex immunohistochemistry, and in vivo administration of DKK1 neutralizing antibodies. Our results indicate that tumor cells significantly induce DKK1 expression in ganglia in co-culture experiments. Additionally, in vivo orthotopic tumor models revealed that DKK1 levels were markedly elevated in both the plasma and ganglia of tumor-bearing mice. Neutralization DKK1 in vivo led to a reduction in MDSC levels and impaired MDSC-mediated T cell suppression in both HNSCC and PDAC orthotopic models. Furthermore, conditional deletion of neuronal DKK1 elucidated its role in MDSC infiltration and immune suppression. Our findings establish a novel molecular axis in which tumor cells modulate the immune microenvironment by inducing the expression of secreted proteins in nerves, thereby enriching the research landscape of the tumor microenvironment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cellular signalling
Cellular signalling 生物-细胞生物学
CiteScore
8.40
自引率
0.00%
发文量
250
审稿时长
27 days
期刊介绍: Cellular Signalling publishes original research describing fundamental and clinical findings on the mechanisms, actions and structural components of cellular signalling systems in vitro and in vivo. Cellular Signalling aims at full length research papers defining signalling systems ranging from microorganisms to cells, tissues and higher organisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信