Liu-Gen Cui, Shu-Hui Wang, Sumra Komal, Jian-Jian Yin, Miao-Miao Zhai, Yue-Jiao Zhou, Qing-Wen Yu, Cong Wang, Pei Wang, Zhi-Mo Wang, Aliza Muhammad Zafar, Muhammad Shakeel, Li-Rong Zhang, Sheng-Na Han
{"title":"ALKBH5 promotes cardiac fibroblasts pyroptosis after myocardial infarction through Notch1/NLRP3 pathway.","authors":"Liu-Gen Cui, Shu-Hui Wang, Sumra Komal, Jian-Jian Yin, Miao-Miao Zhai, Yue-Jiao Zhou, Qing-Wen Yu, Cong Wang, Pei Wang, Zhi-Mo Wang, Aliza Muhammad Zafar, Muhammad Shakeel, Li-Rong Zhang, Sheng-Na Han","doi":"10.1016/j.cellsig.2024.111574","DOIUrl":null,"url":null,"abstract":"<p><p>Through bioinformatics screening, we previously found that AlkB homolog 5 (ALKBH5) expression, an m<sup>6</sup>A demethylase, was higher in patients with heart failure than in the normal population. This study aimed to investigate the molecular mechanisms by which ALKBH5 regulates heart failure. We established a myocardial infarction (MI)-induced heart failure model in rats in vivo and an in vitro hypoxia model using rat primary cardiac fibroblasts (RCFs). M<sup>6</sup>A sequencing, RNA immunoprecipitation assay, RNA pull-down assay, proximity ligation assay, gain-of-function and loss-of-function experiments, and transcriptomic analysis were performed to confirm the pyroptosis-promoting effects of ALKBH5. The effects of two small-molecule inhibitors (ZINC78774792 and ZINC00546946) on ALKBH5 expression were examined. The expression of m<sup>6</sup>A demethyltransferase ALKBH5 was significantly elevated in hypoxia-induced RCFs. Transcriptional profiling revealed Notch receptor 1 (Notch1) as an m<sup>6</sup>A modification target of ALKBH5, and Notch1 mRNA m<sup>6</sup>A modifications were increased in ALKBH5-deficient RCFs. Moreover, Notch1 and NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) are associated. ALKBH5 knockdown alleviated hypoxia-induced RCF cell pyroptosis by inhibiting Notch1, NLRP3 inflammasome activation, and pyroptosis-associated protein (N-GSDMD), whereas ALKBH5 overexpression had the opposite effect. Targeting ALKBH5 with two small-molecule inhibitors (ZINC78774792 and ZINC00546946) reduced hypoxia-induced RCF pyroptosis, and ZINC00546946 alleviated cell pyroptosis after myocardial infarction in mice. Our results indicate that ALKBH5 promotes cardiac fibroblast pyroptosis after myocardial infarction through the Notch1/NLRP3 pathway. Therefore, inhibiting ALKBH5 may be a strategy for treating cardiovascular diseases.</p>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":" ","pages":"111574"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular signalling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cellsig.2024.111574","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Through bioinformatics screening, we previously found that AlkB homolog 5 (ALKBH5) expression, an m6A demethylase, was higher in patients with heart failure than in the normal population. This study aimed to investigate the molecular mechanisms by which ALKBH5 regulates heart failure. We established a myocardial infarction (MI)-induced heart failure model in rats in vivo and an in vitro hypoxia model using rat primary cardiac fibroblasts (RCFs). M6A sequencing, RNA immunoprecipitation assay, RNA pull-down assay, proximity ligation assay, gain-of-function and loss-of-function experiments, and transcriptomic analysis were performed to confirm the pyroptosis-promoting effects of ALKBH5. The effects of two small-molecule inhibitors (ZINC78774792 and ZINC00546946) on ALKBH5 expression were examined. The expression of m6A demethyltransferase ALKBH5 was significantly elevated in hypoxia-induced RCFs. Transcriptional profiling revealed Notch receptor 1 (Notch1) as an m6A modification target of ALKBH5, and Notch1 mRNA m6A modifications were increased in ALKBH5-deficient RCFs. Moreover, Notch1 and NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) are associated. ALKBH5 knockdown alleviated hypoxia-induced RCF cell pyroptosis by inhibiting Notch1, NLRP3 inflammasome activation, and pyroptosis-associated protein (N-GSDMD), whereas ALKBH5 overexpression had the opposite effect. Targeting ALKBH5 with two small-molecule inhibitors (ZINC78774792 and ZINC00546946) reduced hypoxia-induced RCF pyroptosis, and ZINC00546946 alleviated cell pyroptosis after myocardial infarction in mice. Our results indicate that ALKBH5 promotes cardiac fibroblast pyroptosis after myocardial infarction through the Notch1/NLRP3 pathway. Therefore, inhibiting ALKBH5 may be a strategy for treating cardiovascular diseases.
期刊介绍:
Cellular Signalling publishes original research describing fundamental and clinical findings on the mechanisms, actions and structural components of cellular signalling systems in vitro and in vivo.
Cellular Signalling aims at full length research papers defining signalling systems ranging from microorganisms to cells, tissues and higher organisms.