In-silico and In-vitro Evaluation of Novel Carboxamide Analogue on the Metastasis of Triple Negative Breast Cancer Cells Utilizing Novel PCPTC-loaded PEGylated-PLGA Nanocarriers.

IF 3.1 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ankur Sharma, Amka Nagar, Susan Hawthorne, Mohini Singh
{"title":"In-silico and In-vitro Evaluation of Novel Carboxamide Analogue on the Metastasis of Triple Negative Breast Cancer Cells Utilizing Novel PCPTC-loaded PEGylated-PLGA Nanocarriers.","authors":"Ankur Sharma, Amka Nagar, Susan Hawthorne, Mohini Singh","doi":"10.1007/s12010-024-05135-7","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to determine the effects of novel N-{3-[(pyridin-4-yl)carbamoyl] phenyl} thiophene-2-carboxamide or PCPTC chemical moiety loaded Poly(lactic-co-glycolic acid)-Poly (Ethylene glycol) or (PLGA-PEGylated) NP as an anti-metastatic Ran GTPase therapeutic agent on MDA-MB231 triple-negative human breast cancer cells. Molecular docking and MD simulation was done to determine the binding potential of novel carboxamide PCPTC with Ran GTPase. PLGA and PLGA-PEG based NP encapsulating PCPTC were fabricated using the Modified Double Emulsion Solvent Evaporation Technique and characterized for size, zeta potential, polydispersity and morphology. In vitro evaluation of loaded nanoparticles such as cellular localization study, cell proliferation, cell migration, cell invasion and Ran Pull Down assay were carried out on MDA-MB231 breast cancer cells. Ran downregulation was determined by pull down assay. PCPTC with Ran GTPase exhibited strong structural stability based on in silico analysis. The average sizes of PCPTC loaded NP ranged between 166.3 nm to 257.5 nm and were all negatively charged. Scanning electron microscopy data showed that loaded NP were smooth and spherical. Fluorescence microscopy data confirmed the intracellular localization of loaded nanoparticles inside the MDA-MB231 cells. Cell proliferation assay (MTT assay) confirmed the cytotoxic effect of the loaded-NP when compared to blank nanoparticles. PCPTC-loaded NP inhibited metastasis and invasion of MDA-MB231 cells. This anti-metastatic and the anti-invasive effect was due to the Ran GTPase cycle blockage, which was confirmed by performing Ran Pull down assay. we propose that PCPTC is a promising compound to inhibit Ran GTPase and may act as a potential therapeutic agent against breast cancer. PCPTC-loaded NP successfully stopped the metastasis of MDA-MB231 cells by disrupting the Ran cycle.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-024-05135-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to determine the effects of novel N-{3-[(pyridin-4-yl)carbamoyl] phenyl} thiophene-2-carboxamide or PCPTC chemical moiety loaded Poly(lactic-co-glycolic acid)-Poly (Ethylene glycol) or (PLGA-PEGylated) NP as an anti-metastatic Ran GTPase therapeutic agent on MDA-MB231 triple-negative human breast cancer cells. Molecular docking and MD simulation was done to determine the binding potential of novel carboxamide PCPTC with Ran GTPase. PLGA and PLGA-PEG based NP encapsulating PCPTC were fabricated using the Modified Double Emulsion Solvent Evaporation Technique and characterized for size, zeta potential, polydispersity and morphology. In vitro evaluation of loaded nanoparticles such as cellular localization study, cell proliferation, cell migration, cell invasion and Ran Pull Down assay were carried out on MDA-MB231 breast cancer cells. Ran downregulation was determined by pull down assay. PCPTC with Ran GTPase exhibited strong structural stability based on in silico analysis. The average sizes of PCPTC loaded NP ranged between 166.3 nm to 257.5 nm and were all negatively charged. Scanning electron microscopy data showed that loaded NP were smooth and spherical. Fluorescence microscopy data confirmed the intracellular localization of loaded nanoparticles inside the MDA-MB231 cells. Cell proliferation assay (MTT assay) confirmed the cytotoxic effect of the loaded-NP when compared to blank nanoparticles. PCPTC-loaded NP inhibited metastasis and invasion of MDA-MB231 cells. This anti-metastatic and the anti-invasive effect was due to the Ran GTPase cycle blockage, which was confirmed by performing Ran Pull down assay. we propose that PCPTC is a promising compound to inhibit Ran GTPase and may act as a potential therapeutic agent against breast cancer. PCPTC-loaded NP successfully stopped the metastasis of MDA-MB231 cells by disrupting the Ran cycle.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Biochemistry and Biotechnology
Applied Biochemistry and Biotechnology 工程技术-生化与分子生物学
CiteScore
5.70
自引率
6.70%
发文量
460
审稿时长
5.3 months
期刊介绍: This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities. In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信