Experimental Assessment of Traction Force and Associated Fetal Brain Deformation in Vacuum-Assisted Delivery.

IF 3 2区 医学 Q3 ENGINEERING, BIOMEDICAL
Estelle Pitti, Lotta Herling, Xiaogai Li, Gunilla Ajne, Matilda Larsson
{"title":"Experimental Assessment of Traction Force and Associated Fetal Brain Deformation in Vacuum-Assisted Delivery.","authors":"Estelle Pitti, Lotta Herling, Xiaogai Li, Gunilla Ajne, Matilda Larsson","doi":"10.1007/s10439-024-03665-z","DOIUrl":null,"url":null,"abstract":"<p><p>Vacuum-assisted delivery (VAD) uses a vacuum cup on the fetal scalp to apply traction during uterine contractions, assisting complicated vaginal deliveries. Despite its widespread use, VAD presents a higher risk of neonatal morbidity compared to natural vaginal delivery and biomechanical evidence for safe VAD traction forces is still limited. The aim of this study is to develop and assess the feasibility of an experimental VAD testing setup, and investigate the impact of traction forces on fetal brain deformation. A patient-specific fetal head phantom was developed and subjected to experimental VAD in two testing setups: one with manual and one with automatic force application. The skull phantom was 3D printed using multi-material Polyjet technology. The brain phantom was cast in a 3D-printed mold using a composite hydrogel, and sonomicrometry crystals were used to estimate the brain deformation in three brain regions. The experimental VADs on the fetal head phantom allowed for quantifying brain strain with traction forces up to 112 N. Consistent brain crystal movements aligned with the traction force demonstrated the feasibility of the setup. The estimated brain deformations reached up to 4% and correlated significantly with traction force (p < 0.05) in regions close to the suction cup. Despite limitations such as the absence of scalp modeling and a simplified strain computation, this study provides a baseline for numerical studies and supports further research to optimize the safety of VAD procedures and develop VAD training platforms.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10439-024-03665-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Vacuum-assisted delivery (VAD) uses a vacuum cup on the fetal scalp to apply traction during uterine contractions, assisting complicated vaginal deliveries. Despite its widespread use, VAD presents a higher risk of neonatal morbidity compared to natural vaginal delivery and biomechanical evidence for safe VAD traction forces is still limited. The aim of this study is to develop and assess the feasibility of an experimental VAD testing setup, and investigate the impact of traction forces on fetal brain deformation. A patient-specific fetal head phantom was developed and subjected to experimental VAD in two testing setups: one with manual and one with automatic force application. The skull phantom was 3D printed using multi-material Polyjet technology. The brain phantom was cast in a 3D-printed mold using a composite hydrogel, and sonomicrometry crystals were used to estimate the brain deformation in three brain regions. The experimental VADs on the fetal head phantom allowed for quantifying brain strain with traction forces up to 112 N. Consistent brain crystal movements aligned with the traction force demonstrated the feasibility of the setup. The estimated brain deformations reached up to 4% and correlated significantly with traction force (p < 0.05) in regions close to the suction cup. Despite limitations such as the absence of scalp modeling and a simplified strain computation, this study provides a baseline for numerical studies and supports further research to optimize the safety of VAD procedures and develop VAD training platforms.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Biomedical Engineering
Annals of Biomedical Engineering 工程技术-工程:生物医学
CiteScore
7.50
自引率
15.80%
发文量
212
审稿时长
3 months
期刊介绍: Annals of Biomedical Engineering is an official journal of the Biomedical Engineering Society, publishing original articles in the major fields of bioengineering and biomedical engineering. The Annals is an interdisciplinary and international journal with the aim to highlight integrated approaches to the solutions of biological and biomedical problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信