{"title":"Facile Synthesis of Silsesquioxane-Based Hybrid Crosslinked Polymers via One-Step Amine-Ene Reaction for Efficient Adsorption of Various Pollutants.","authors":"Shusen Li, Saddam Hussain, Hongzhi Liu","doi":"10.1002/asia.202401254","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid advancement of industrial production has led to an increase in water pollutants, posing a significant threat to public health. With the deepening of research on pollutant adsorbents. The application of silsesquioxane-based cross-linked polymer networks in water pollution treatment has gradually attracted people's attention. This study introduces two new crosslinked hybrid network, PCS-OB and PCS-OP, which were created through one-step amine-ene reaction between octa(aminophenyl) silsesquioxane (OAPS) and bismaleimide or N, N'-1,3-phenylenedimaleimide. The synthesized hybrid networks were characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analysis, thermogravimetric analysis (TGA), and solid-state nuclear magnetic resonance (NMR) spectroscopy. The successful synthesis of the material is proved. PCS-OB and PCS-OP exhibited remarkable efficiency in the adsorption and removal of contaminants such as antibiotics, dyes, and iodine from wastewater. The maximum adsorbents for Rhodamine B (RhB), iodine vapor and berberine hydrochloride (BCH) were 1069 mg g-1, 1590 mg g-1 and 294mg g-1, respectively. In conclusion, this work proves that PCS-OB and PCS-OP have broad application prospects in pollutant treatment.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202401254"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202401254","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid advancement of industrial production has led to an increase in water pollutants, posing a significant threat to public health. With the deepening of research on pollutant adsorbents. The application of silsesquioxane-based cross-linked polymer networks in water pollution treatment has gradually attracted people's attention. This study introduces two new crosslinked hybrid network, PCS-OB and PCS-OP, which were created through one-step amine-ene reaction between octa(aminophenyl) silsesquioxane (OAPS) and bismaleimide or N, N'-1,3-phenylenedimaleimide. The synthesized hybrid networks were characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analysis, thermogravimetric analysis (TGA), and solid-state nuclear magnetic resonance (NMR) spectroscopy. The successful synthesis of the material is proved. PCS-OB and PCS-OP exhibited remarkable efficiency in the adsorption and removal of contaminants such as antibiotics, dyes, and iodine from wastewater. The maximum adsorbents for Rhodamine B (RhB), iodine vapor and berberine hydrochloride (BCH) were 1069 mg g-1, 1590 mg g-1 and 294mg g-1, respectively. In conclusion, this work proves that PCS-OB and PCS-OP have broad application prospects in pollutant treatment.
期刊介绍:
Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics.
Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews.
A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal.
Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).