Safflower CtFT genes orchestrating flowering time and flavonoid biosynthesis.

IF 4.3 2区 生物学 Q1 PLANT SCIENCES
Zhiling Li, Lili Yu, Abdul Wakeel Umar, Jiaruo Wang, Jian Zhang, Nan Wang, Min Zhang, Na Yao, Naveed Ahmad, Xiuming Liu
{"title":"Safflower CtFT genes orchestrating flowering time and flavonoid biosynthesis.","authors":"Zhiling Li, Lili Yu, Abdul Wakeel Umar, Jiaruo Wang, Jian Zhang, Nan Wang, Min Zhang, Na Yao, Naveed Ahmad, Xiuming Liu","doi":"10.1186/s12870-024-05943-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Safflower thrives in dry environments but faces difficulties with flowering in wet and rainy summers. Flavonoids play a role in flower development and can potentially alleviate these challenges. Furthermore, the FLOWERING LOCUS T (FT) family of phosphatidylethanolamine-binding protein (PEBP) genes play a crucial role in the photoperiodic flowering pathway. However, their direct impact on flowering and flavonoid biosynthesis under different light duration is elusive.</p><p><strong>Results: </strong>Utilizing the genome sequencing of Safflower (Jihong NO.1), the current study identifies three specific genes (CtFT1, CtFT2, and CtFT3) that exhibit upregulation in response to long-day conditions. The overexpression of CtFT2, displayed an early, whereas CtFT1 and CtFT3 late flowering phenotype in Arabidopsis thaliana. Interestingly, the transient overexpression of CtFT1 in safflower leaves caused early flowering, while overexpressing CtFT2 and CtFT3 led to late flowering. Additionally, overexpressing CtFT3 in Arabidopsis and CtFT1, CtFT2, and CtFT3 in safflower leaves, significantly increased flavonoid synthesis.</p><p><strong>Conclusions: </strong>These findings showed that overexpression of CtFT genes could affect the flowering time and significantly increase the flavonoid content of safflower. The function of CtFT gene is different in safflower and Arabidopsis. This study provides valuable insights into the role of CtFT genes in flower formation and flavonoid synthesis in safflower, which may help in improving safflower breeding quality and its adaptability to diverse environmental conditions.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":"24 1","pages":"1232"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-024-05943-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Safflower thrives in dry environments but faces difficulties with flowering in wet and rainy summers. Flavonoids play a role in flower development and can potentially alleviate these challenges. Furthermore, the FLOWERING LOCUS T (FT) family of phosphatidylethanolamine-binding protein (PEBP) genes play a crucial role in the photoperiodic flowering pathway. However, their direct impact on flowering and flavonoid biosynthesis under different light duration is elusive.

Results: Utilizing the genome sequencing of Safflower (Jihong NO.1), the current study identifies three specific genes (CtFT1, CtFT2, and CtFT3) that exhibit upregulation in response to long-day conditions. The overexpression of CtFT2, displayed an early, whereas CtFT1 and CtFT3 late flowering phenotype in Arabidopsis thaliana. Interestingly, the transient overexpression of CtFT1 in safflower leaves caused early flowering, while overexpressing CtFT2 and CtFT3 led to late flowering. Additionally, overexpressing CtFT3 in Arabidopsis and CtFT1, CtFT2, and CtFT3 in safflower leaves, significantly increased flavonoid synthesis.

Conclusions: These findings showed that overexpression of CtFT genes could affect the flowering time and significantly increase the flavonoid content of safflower. The function of CtFT gene is different in safflower and Arabidopsis. This study provides valuable insights into the role of CtFT genes in flower formation and flavonoid synthesis in safflower, which may help in improving safflower breeding quality and its adaptability to diverse environmental conditions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Plant Biology
BMC Plant Biology 生物-植物科学
CiteScore
8.40
自引率
3.80%
发文量
539
审稿时长
3.8 months
期刊介绍: BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信