Yanjin Zhu, Jun Yu, Qinhui Yang, Yumian Xie, Xupeng Li, Zhuo Chen, Yan Xiong, Wei Fu, Honghong He, Shi Yin, Daoliang Lan, Jian Li, Xianrong Xiong
{"title":"Mitochondria-targeted antioxidant MitoQ improves the quality of low temperature-preserved yak semen via alleviating oxidative stress.","authors":"Yanjin Zhu, Jun Yu, Qinhui Yang, Yumian Xie, Xupeng Li, Zhuo Chen, Yan Xiong, Wei Fu, Honghong He, Shi Yin, Daoliang Lan, Jian Li, Xianrong Xiong","doi":"10.1016/j.anireprosci.2024.107680","DOIUrl":null,"url":null,"abstract":"<p><p>Low-temperature preservation of yak semen during transportation and conservation is crucial to accelerate yak breeding. The effects of low-temperature cooling on yak semen quality, however, are poorly understood. This study aimed to determine the dose-dependent effect of mitochondria-targeted antioxidant \"MitoQ\" on the motility, oxidative status, and mitochondrial function of yak semen during low-temperature preservation. Semen samples were collected from six adult healthy Maiwa yaks and preserved at 4 ℃ in semen extender containing 0, 50, 100, 200, and 400 nM MitoQ, respectively. Firstly, the motility, membrane integrity, acrosome integrity, and abnormity index of yak spermatozoa were evaluated to determine the optimal MitoQ concentration. Next, the effect of MitoQ at the optimal concentration on spermatozoa antioxidant capacity, including reactive oxygen species (ROS) and malondialdehyde (MDA) contents, total antioxidant capacity (T-AOC), and superoxide dismutase content (SOD) levels, as well as mitochondrial membrane potential were analyzed. Up to 96 h of low-temperature storage, 200 nM MitoQ showed the most optimal effect on motility, membrane integrity, and acrosome integrity (P < 0.05) but not on sperm morphology (P > 0.05). Also, 200 nM MitoQ markedly reduced yak spermatozoa ROS and MDA contents for up to 48 h of low-temperature storage (P < 0.05). Finally, 200 nM MitoQ significantly improved T-AOC, SOD, and mitochondrial membrane potential for up to 24, 48, and 72 h of low-temperature storage, respectively (P < 0.05). In summary, semen extender supplementation with 200 nM MitoQ is beneficial for low-temperature yak semen preservation via improving the oxidative status.</p>","PeriodicalId":7880,"journal":{"name":"Animal Reproduction Science","volume":"273 ","pages":"107680"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Reproduction Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.anireprosci.2024.107680","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Low-temperature preservation of yak semen during transportation and conservation is crucial to accelerate yak breeding. The effects of low-temperature cooling on yak semen quality, however, are poorly understood. This study aimed to determine the dose-dependent effect of mitochondria-targeted antioxidant "MitoQ" on the motility, oxidative status, and mitochondrial function of yak semen during low-temperature preservation. Semen samples were collected from six adult healthy Maiwa yaks and preserved at 4 ℃ in semen extender containing 0, 50, 100, 200, and 400 nM MitoQ, respectively. Firstly, the motility, membrane integrity, acrosome integrity, and abnormity index of yak spermatozoa were evaluated to determine the optimal MitoQ concentration. Next, the effect of MitoQ at the optimal concentration on spermatozoa antioxidant capacity, including reactive oxygen species (ROS) and malondialdehyde (MDA) contents, total antioxidant capacity (T-AOC), and superoxide dismutase content (SOD) levels, as well as mitochondrial membrane potential were analyzed. Up to 96 h of low-temperature storage, 200 nM MitoQ showed the most optimal effect on motility, membrane integrity, and acrosome integrity (P < 0.05) but not on sperm morphology (P > 0.05). Also, 200 nM MitoQ markedly reduced yak spermatozoa ROS and MDA contents for up to 48 h of low-temperature storage (P < 0.05). Finally, 200 nM MitoQ significantly improved T-AOC, SOD, and mitochondrial membrane potential for up to 24, 48, and 72 h of low-temperature storage, respectively (P < 0.05). In summary, semen extender supplementation with 200 nM MitoQ is beneficial for low-temperature yak semen preservation via improving the oxidative status.
期刊介绍:
Animal Reproduction Science publishes results from studies relating to reproduction and fertility in animals. This includes both fundamental research and applied studies, including management practices that increase our understanding of the biology and manipulation of reproduction. Manuscripts should go into depth in the mechanisms involved in the research reported, rather than a give a mere description of findings. The focus is on animals that are useful to humans including food- and fibre-producing; companion/recreational; captive; and endangered species including zoo animals, but excluding laboratory animals unless the results of the study provide new information that impacts the basic understanding of the biology or manipulation of reproduction.
The journal''s scope includes the study of reproductive physiology and endocrinology, reproductive cycles, natural and artificial control of reproduction, preservation and use of gametes and embryos, pregnancy and parturition, infertility and sterility, diagnostic and therapeutic techniques.
The Editorial Board of Animal Reproduction Science has decided not to publish papers in which there is an exclusive examination of the in vitro development of oocytes and embryos; however, there will be consideration of papers that include in vitro studies where the source of the oocytes and/or development of the embryos beyond the blastocyst stage is part of the experimental design.