Kyle K. Nagasawa, Karl M. Yost, Zuodong Sun, Yi Tang
{"title":"d-Galactose-Esterification of a Fungal Polyketide Catalyzed by a Carnitine Acyltransferase Domain","authors":"Kyle K. Nagasawa, Karl M. Yost, Zuodong Sun, Yi Tang","doi":"10.1002/cbic.202400846","DOIUrl":null,"url":null,"abstract":"<p>While sugar-containing natural products are commonly biosynthesized via glycosyltranferases using sugar-UDP as the electrophile, nature has evolved alternative strategies of glyco-modification to expand the diversity of natural products. Hydroxyl groups on sugars can serve as nucleophiles in the release of polyketide products from polyketide synthases. Herein, we demonstrate a highly reducing polyketide synthase (HRPKS) from the biocontrol fungus <i>Trichoderma afroharzianum</i> T22, which is terminated with a carnitine acyltransferase (cAT) domain, catalyzes the biosynthesis of a <span>d</span>-galactose esterified polyketide named as trichogalactin. Structure-guided enzymatic assays showed that the sugar nucleophile in the esterification reaction catalyzed by cAT is α-<span>d</span>-galactose-1-phosphate (Gal-1-P) instead of free <span>d</span>-galactose. The released product, trichogalactin phosphate, is subsequently dephosphorylated by a host alkaline phosphatase to complete the biosynthesis of trichogalactin. The cAT domain is highly specific for Gal-1-P and does not accept α-<span>d</span>-glucose-1-phosphate or α-<span>d</span>-mannose-1-phosphate. Our study expands the inventory of natural products from an agriculturally important fungus and demonstrates the potential of mining cAT-containing HRPKSs to discover new glyco-esterified natural products.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":"26 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbic.202400846","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
While sugar-containing natural products are commonly biosynthesized via glycosyltranferases using sugar-UDP as the electrophile, nature has evolved alternative strategies of glyco-modification to expand the diversity of natural products. Hydroxyl groups on sugars can serve as nucleophiles in the release of polyketide products from polyketide synthases. Herein, we demonstrate a highly reducing polyketide synthase (HRPKS) from the biocontrol fungus Trichoderma afroharzianum T22, which is terminated with a carnitine acyltransferase (cAT) domain, catalyzes the biosynthesis of a d-galactose esterified polyketide named as trichogalactin. Structure-guided enzymatic assays showed that the sugar nucleophile in the esterification reaction catalyzed by cAT is α-d-galactose-1-phosphate (Gal-1-P) instead of free d-galactose. The released product, trichogalactin phosphate, is subsequently dephosphorylated by a host alkaline phosphatase to complete the biosynthesis of trichogalactin. The cAT domain is highly specific for Gal-1-P and does not accept α-d-glucose-1-phosphate or α-d-mannose-1-phosphate. Our study expands the inventory of natural products from an agriculturally important fungus and demonstrates the potential of mining cAT-containing HRPKSs to discover new glyco-esterified natural products.
期刊介绍:
ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).