Inhibition of USP22 by miR-200b-5p represses gastric cancer cell proliferation and migration by targeting the NF-κB signaling pathway.

IF 3.3 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yingying Guo, Panpan Zhang, Zhixing Gao, Xiaotian Liu, Chen Su, Su Chen, Tao An, Jingjing Hou
{"title":"Inhibition of USP22 by miR-200b-5p represses gastric cancer cell proliferation and migration by targeting the NF-κB signaling pathway.","authors":"Yingying Guo, Panpan Zhang, Zhixing Gao, Xiaotian Liu, Chen Su, Su Chen, Tao An, Jingjing Hou","doi":"10.3724/abbs.2024231","DOIUrl":null,"url":null,"abstract":"<p><p>Gastric cancer (GC) is an aggressive tumor type with an intricate pathogenesis and limited therapeutic options. Ubiquitin-specific protease 22 (USP22) is a protein implicated in cell proliferation, metastasis, and tumorigenesis. However, the regulatory mechanisms governing USP22 in GC are still not fully understood. In this study, we perform bioinformatics analysis to identify conserved miRNA recognition sites for miR-200b-5p within the 3'UTR of <i>USP22</i>. Validation via luciferase reporter assay confirms the transcriptional regulation of <i>USP22</i> by miR-200b-5p. Overexpression of miR-200b-5p markedly inhibits the proliferation and migration of GC cells <i>in vitro</i> and suppresses tumor growth <i>in vivo</i>. Conversely, ectopic expression of USP22 reversed this effect by modulating the NF-κB signaling pathway. Additionally, qPCR analysis reveals an inverse correlation between the miR-200b-5p level and USP22 expression in GC. Collectively, our findings indicate that miR-200b-5p-mediated inhibition of USP22 attenuates cell proliferation by targeting the NF-κB signaling pathway in GC, suggesting that miR-200b-5p and USP22 could serve as potential diagnostic or therapeutic targets for gastric cancer and other related human diseases.</p>","PeriodicalId":6978,"journal":{"name":"Acta biochimica et biophysica Sinica","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta biochimica et biophysica Sinica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3724/abbs.2024231","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Gastric cancer (GC) is an aggressive tumor type with an intricate pathogenesis and limited therapeutic options. Ubiquitin-specific protease 22 (USP22) is a protein implicated in cell proliferation, metastasis, and tumorigenesis. However, the regulatory mechanisms governing USP22 in GC are still not fully understood. In this study, we perform bioinformatics analysis to identify conserved miRNA recognition sites for miR-200b-5p within the 3'UTR of USP22. Validation via luciferase reporter assay confirms the transcriptional regulation of USP22 by miR-200b-5p. Overexpression of miR-200b-5p markedly inhibits the proliferation and migration of GC cells in vitro and suppresses tumor growth in vivo. Conversely, ectopic expression of USP22 reversed this effect by modulating the NF-κB signaling pathway. Additionally, qPCR analysis reveals an inverse correlation between the miR-200b-5p level and USP22 expression in GC. Collectively, our findings indicate that miR-200b-5p-mediated inhibition of USP22 attenuates cell proliferation by targeting the NF-κB signaling pathway in GC, suggesting that miR-200b-5p and USP22 could serve as potential diagnostic or therapeutic targets for gastric cancer and other related human diseases.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta biochimica et biophysica Sinica
Acta biochimica et biophysica Sinica 生物-生化与分子生物学
CiteScore
5.00
自引率
5.40%
发文量
170
审稿时长
3 months
期刊介绍: Acta Biochimica et Biophysica Sinica (ABBS) is an internationally peer-reviewed journal sponsored by the Shanghai Institute of Biochemistry and Cell Biology (CAS). ABBS aims to publish original research articles and review articles in diverse fields of biochemical research including Protein Science, Nucleic Acids, Molecular Biology, Cell Biology, Biophysics, Immunology, and Signal Transduction, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信