{"title":"Plastic pollution and marine mussels: Unravelling disparities in research efforts, biological effects and influences of global warming.","authors":"Marine Uguen, Sylvie M Gaudron, Laurent Seuront","doi":"10.1016/j.scitotenv.2024.178078","DOIUrl":null,"url":null,"abstract":"<p><p>The ever-growing contamination of the environment by plastics is a major scientific and societal concern. Specifically, the study of microplastics (1 μm to 5 mm), nanoplastics (< 1 μm), and their leachates is a critical research area as they have the potential to cause detrimental effects, especially when they impact key ecological species. Marine mussels, as ecosystem engineers and filter feeders, are particularly vulnerable to this type of pollution. In this study, we reviewed the 106 articles that focus on the impacts of plastic pollution on marine mussels. First, we examined the research efforts in terms of plastic characteristics (size, polymer, shape, and leachates) and exposure conditions (concentration, duration, species, life stages, and internal factors), their disparities, and their environmental relevance. Then, we provided an overview of the effects of plastics on mussels at each organisational levels, from the smaller scales (molecular, cellular, tissue and organ impacts) to the organism level (functional, physiological, and behavioural impacts) as well as larger-scale implications (associated community impacts). We finally discussed the limited research available on multi-stressor studies involving plastics, particularly in relation to temperature stress. We identified temperature as an underestimated factor that could shape the impacts of plastics, and proposed a roadmap for future research to address their combined effects. This review also highlights the impact of plastic pollution on mussels at multiple levels and emphasises the strong disparities in research effort and the need for more holistic research, notably through the consideration of multiple stressors, with a specific focus on temperature which is likely to become an increasingly relevant forcing factor in an era of global warming. By identifying critical gaps in current knowledge, we advocate for more coordinated interdisciplinary and international collaborations and raise awareness of the need for environmental coherence in the choice and implementation of experimental protocols.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"959 ","pages":"178078"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.178078","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The ever-growing contamination of the environment by plastics is a major scientific and societal concern. Specifically, the study of microplastics (1 μm to 5 mm), nanoplastics (< 1 μm), and their leachates is a critical research area as they have the potential to cause detrimental effects, especially when they impact key ecological species. Marine mussels, as ecosystem engineers and filter feeders, are particularly vulnerable to this type of pollution. In this study, we reviewed the 106 articles that focus on the impacts of plastic pollution on marine mussels. First, we examined the research efforts in terms of plastic characteristics (size, polymer, shape, and leachates) and exposure conditions (concentration, duration, species, life stages, and internal factors), their disparities, and their environmental relevance. Then, we provided an overview of the effects of plastics on mussels at each organisational levels, from the smaller scales (molecular, cellular, tissue and organ impacts) to the organism level (functional, physiological, and behavioural impacts) as well as larger-scale implications (associated community impacts). We finally discussed the limited research available on multi-stressor studies involving plastics, particularly in relation to temperature stress. We identified temperature as an underestimated factor that could shape the impacts of plastics, and proposed a roadmap for future research to address their combined effects. This review also highlights the impact of plastic pollution on mussels at multiple levels and emphasises the strong disparities in research effort and the need for more holistic research, notably through the consideration of multiple stressors, with a specific focus on temperature which is likely to become an increasingly relevant forcing factor in an era of global warming. By identifying critical gaps in current knowledge, we advocate for more coordinated interdisciplinary and international collaborations and raise awareness of the need for environmental coherence in the choice and implementation of experimental protocols.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.