{"title":"Platelet-mimicking nanoparticles loaded with diallyl trisulfide for Mitigating Myocardial Ischemia-Reperfusion Injury in rats.","authors":"Yihan Chen, Ling Lin, Lingling Xu, Qiaofeng Jin, Wenpei Fu, Ying Bai, Tian Huang, Tang Gao, Wenqian Wu, Chunyan Xu, Jing Wang, Li Zhang, Qing Lv, Yali Yang, Mingxing Xie, Xiaoqiu Dong","doi":"10.1016/j.colsurfb.2024.114460","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogen sulfide (H<sub>2</sub>S) shows promise in treating myocardial ischemia-reperfusion injury (MIRI), but the challenge of controlled and sustained release hinders its clinical utility. In this study, we developed a platelet membrane-encapsulated mesoporous silica nanoparticle loaded with the H<sub>2</sub>S donor diallyl trisulfide (PM-MSN-DATS). PM-MSN-DATS demonstrated optimal encapsulation efficiency and drug-loading content. Comprehensive in vitro and in vivo assessments confirmed the biosafety of PM-MSN-DATS. In vitro, PM-MSN-DATS adhered to inflammation-activated endothelial cells and exhibited targeted accumulation in MIRI rat hearts. In vivo experiments revealed significant reductions in reactive oxygen species (ROS) and myocardial fibrosis area, improving cardiac function. Our findings highlight successfully creating a targeted H<sub>2</sub>S delivery system through platelet membrane-coated MSN nanoparticles. This well-designed drug delivery platform holds significant promise for advancing MIRI treatment strategies.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"248 ","pages":"114460"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.colsurfb.2024.114460","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen sulfide (H2S) shows promise in treating myocardial ischemia-reperfusion injury (MIRI), but the challenge of controlled and sustained release hinders its clinical utility. In this study, we developed a platelet membrane-encapsulated mesoporous silica nanoparticle loaded with the H2S donor diallyl trisulfide (PM-MSN-DATS). PM-MSN-DATS demonstrated optimal encapsulation efficiency and drug-loading content. Comprehensive in vitro and in vivo assessments confirmed the biosafety of PM-MSN-DATS. In vitro, PM-MSN-DATS adhered to inflammation-activated endothelial cells and exhibited targeted accumulation in MIRI rat hearts. In vivo experiments revealed significant reductions in reactive oxygen species (ROS) and myocardial fibrosis area, improving cardiac function. Our findings highlight successfully creating a targeted H2S delivery system through platelet membrane-coated MSN nanoparticles. This well-designed drug delivery platform holds significant promise for advancing MIRI treatment strategies.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.