{"title":"pH/H<sub>2</sub>O<sub>2</sub> dual-responsive macrophage-targeted chitosaccharides nanoparticles to combat intracellular bacterial infection.","authors":"Xiaomei Dai, Yu Li, Yongjie Zhang, Yuqin Zou, Siyuan Yuan, Feng Gao","doi":"10.1016/j.colsurfb.2024.114465","DOIUrl":null,"url":null,"abstract":"<p><p>Antibiotic resistance combined with bacteria internalization result in recurrent infections that seriously threaten human health. To overcome these problems, a pH/H<sub>2</sub>O<sub>2</sub> dual-responsive nanoparticle (COSBN@CFS@PS) that can target macrophages, exhibiting synergistic antibiotic and β-lactamase inhibitor activity, is reported. Chitosaccharides (COS) is covalently bound with benzenboronic acid pinacol ester and assemble with cefoxitin sodium salt (CFS) to form COSBN@CFS nanoparticles. Then, COSBN@CFS was encapsulated with phosphatidylserine (PS), which aimed to targeted uptake by macrophages. After the uptake, the pH/H<sub>2</sub>O<sub>2</sub> dual-responsive nanoparticle could effectively inhibit β-lactamase activity by release boronic acid (β-lactamase inhibitor), and then reinforced the antibacterial activity of CFS. Meanwhile, the resultant nanoparticles could significantly inhibit the growth of CFS-resistant bacteria. Furthermore, these nanoparticles could eliminate intracellular bacteria in vivo through the synergistic activities of antibiotic and β-lactamase inhibitor. The excellent biocompatibility and outstanding bactericidal activity promise COSBN@CFS@PS have great potential for diverse intracellular bacterial infection therapy.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"248 ","pages":"114465"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.colsurfb.2024.114465","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Antibiotic resistance combined with bacteria internalization result in recurrent infections that seriously threaten human health. To overcome these problems, a pH/H2O2 dual-responsive nanoparticle (COSBN@CFS@PS) that can target macrophages, exhibiting synergistic antibiotic and β-lactamase inhibitor activity, is reported. Chitosaccharides (COS) is covalently bound with benzenboronic acid pinacol ester and assemble with cefoxitin sodium salt (CFS) to form COSBN@CFS nanoparticles. Then, COSBN@CFS was encapsulated with phosphatidylserine (PS), which aimed to targeted uptake by macrophages. After the uptake, the pH/H2O2 dual-responsive nanoparticle could effectively inhibit β-lactamase activity by release boronic acid (β-lactamase inhibitor), and then reinforced the antibacterial activity of CFS. Meanwhile, the resultant nanoparticles could significantly inhibit the growth of CFS-resistant bacteria. Furthermore, these nanoparticles could eliminate intracellular bacteria in vivo through the synergistic activities of antibiotic and β-lactamase inhibitor. The excellent biocompatibility and outstanding bactericidal activity promise COSBN@CFS@PS have great potential for diverse intracellular bacterial infection therapy.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.