Iontophoresis-driven alterations in nanoparticle uptake pathway and intracellular trafficking in carcinoma skin cancer cells.

IF 5.4 2区 医学 Q1 BIOPHYSICS
Gabriela Fávero Galvão, Raquel Petrilli, Vanessa Cristina Arfelli, Andréia Nogueira Carvalho, Yugo Araújo Martins, Roberta Ribeiro Costa Rosales, Leticia Fröhlich Archangelo, Luis Lamberti Pinto daSilva, Renata Fonseca Vianna Lopez
{"title":"Iontophoresis-driven alterations in nanoparticle uptake pathway and intracellular trafficking in carcinoma skin cancer cells.","authors":"Gabriela Fávero Galvão, Raquel Petrilli, Vanessa Cristina Arfelli, Andréia Nogueira Carvalho, Yugo Araújo Martins, Roberta Ribeiro Costa Rosales, Leticia Fröhlich Archangelo, Luis Lamberti Pinto daSilva, Renata Fonseca Vianna Lopez","doi":"10.1016/j.colsurfb.2024.114459","DOIUrl":null,"url":null,"abstract":"<p><p>Effective treatment of squamous cell carcinoma (SCC) poses challenges due to intrinsic drug resistance and limited drug penetration into tumor cells. Nanoparticle-based drug delivery systems have emerged as a promising approach to enhance therapeutic efficacy; however, they often face hurdles such as inadequate cellular uptake and rapid lysosomal degradation. This study explores the potential of iontophoresis to augment the efficacy of liposome and immunoliposome-based drug delivery systems for SCC treatment. The study assessed iontophoresis effects on SCC cell line (A431) viability, nanoparticle uptake dynamics, and intracellular distribution patterns. Specific inhibitors were employed to delineate cellular internalization pathways, while fluorescence microscopy and immunohistochemistry examined changes in EGFR expression and lysosomal activity. Results demonstrated that iontophoresis significantly increased cellular uptake of liposomes and immunoliposomes, achieving approximately 50 % uptake compared to 10 % with passive treatment. This enhancement correlated with modifications in endocytic pathways, favoring macropinocytosis and caveolin-mediated endocytosis for liposomes, and macropinocytosis and clathrin-mediated pathways for immunoliposomes. Moreover, iontophoresis induced alterations in EGFR distribution and triggered syncytium-like cellular clustering. It also attenuated lysosomal activity, thereby reducing nanoparticle degradation and prolonging intracellular retention of therapeutic agents. These findings underscore the role of iontophoresis in modulating nanoparticle internalization pathways, offering insights that could advance targeted drug delivery strategies and mitigate therapeutic resistance in SCC and other malignancies.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"248 ","pages":"114459"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.colsurfb.2024.114459","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Effective treatment of squamous cell carcinoma (SCC) poses challenges due to intrinsic drug resistance and limited drug penetration into tumor cells. Nanoparticle-based drug delivery systems have emerged as a promising approach to enhance therapeutic efficacy; however, they often face hurdles such as inadequate cellular uptake and rapid lysosomal degradation. This study explores the potential of iontophoresis to augment the efficacy of liposome and immunoliposome-based drug delivery systems for SCC treatment. The study assessed iontophoresis effects on SCC cell line (A431) viability, nanoparticle uptake dynamics, and intracellular distribution patterns. Specific inhibitors were employed to delineate cellular internalization pathways, while fluorescence microscopy and immunohistochemistry examined changes in EGFR expression and lysosomal activity. Results demonstrated that iontophoresis significantly increased cellular uptake of liposomes and immunoliposomes, achieving approximately 50 % uptake compared to 10 % with passive treatment. This enhancement correlated with modifications in endocytic pathways, favoring macropinocytosis and caveolin-mediated endocytosis for liposomes, and macropinocytosis and clathrin-mediated pathways for immunoliposomes. Moreover, iontophoresis induced alterations in EGFR distribution and triggered syncytium-like cellular clustering. It also attenuated lysosomal activity, thereby reducing nanoparticle degradation and prolonging intracellular retention of therapeutic agents. These findings underscore the role of iontophoresis in modulating nanoparticle internalization pathways, offering insights that could advance targeted drug delivery strategies and mitigate therapeutic resistance in SCC and other malignancies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Colloids and Surfaces B: Biointerfaces
Colloids and Surfaces B: Biointerfaces 生物-材料科学:生物材料
CiteScore
11.10
自引率
3.40%
发文量
730
审稿时长
42 days
期刊介绍: Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields. Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication. The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信