Photocatalytic membranes based on Cu-NH2-MIL-125(Ti) protected by poly(vinylidene fluoride) for high and stable hydrogen production.

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Emilia Gontarek-Castro, Anna Pancielejko, Mateusz Adam Baluk, Malwina Kroczewska-Gnatowska, Przemysław Gnatowski, Krzysztof Matus, Justyna Łuczak, Adriana Zaleska-Medynska
{"title":"Photocatalytic membranes based on Cu-NH<sub>2</sub>-MIL-125(Ti) protected by poly(vinylidene fluoride) for high and stable hydrogen production.","authors":"Emilia Gontarek-Castro, Anna Pancielejko, Mateusz Adam Baluk, Malwina Kroczewska-Gnatowska, Przemysław Gnatowski, Krzysztof Matus, Justyna Łuczak, Adriana Zaleska-Medynska","doi":"10.1039/d4mh01397b","DOIUrl":null,"url":null,"abstract":"<p><p>A porous, photocatalytically active, and water-stable composite membrane has been developed based on Cu-NH<sub>2</sub>-MIL-125(Ti), a titanium-based metal-organic framework (MOF) and PVDF polymeric matrix. To tune the structural and functional properties of the PVDF/MOF composites, the loading degree of the MOF within the polymer was systematically varied. The most effective performance of the composite material was achieved with a 10% wt/wt loading of MOF into the PVDF matrix. Analysis of the photoactivity under UV-vis revealed that increasing the MOF content from 1 to 10% led to an improvement in the H<sub>2</sub> production rate from 86.0 to 389.1 μmol h<sup>-1</sup> m<sup>-2</sup> and from 55.5 to 466.0 μmol h<sup>-1</sup> m<sup>-2</sup> for water-based and AcN-based electrolytes, respectively. Furthermore, the stability of the MOF is significantly improved when incorporated into the PVDF matrix, maintaining its structural integrity even after 20 h of the photoprocess. The SEM images and EDX mapping successfully validate the presence of the MOF within the PVDF matrix following the photoprocess. The study outlines the experimental procedures for synthesizing Cu-NH<sub>2</sub>-MIL-125(Ti), preparing PVDF composites, and details on the photocatalytic experiments. The practical application of our approach can be further expanded to enhance the photocatalytic performance of PVDF-protected unstable MOFs.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01397b","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A porous, photocatalytically active, and water-stable composite membrane has been developed based on Cu-NH2-MIL-125(Ti), a titanium-based metal-organic framework (MOF) and PVDF polymeric matrix. To tune the structural and functional properties of the PVDF/MOF composites, the loading degree of the MOF within the polymer was systematically varied. The most effective performance of the composite material was achieved with a 10% wt/wt loading of MOF into the PVDF matrix. Analysis of the photoactivity under UV-vis revealed that increasing the MOF content from 1 to 10% led to an improvement in the H2 production rate from 86.0 to 389.1 μmol h-1 m-2 and from 55.5 to 466.0 μmol h-1 m-2 for water-based and AcN-based electrolytes, respectively. Furthermore, the stability of the MOF is significantly improved when incorporated into the PVDF matrix, maintaining its structural integrity even after 20 h of the photoprocess. The SEM images and EDX mapping successfully validate the presence of the MOF within the PVDF matrix following the photoprocess. The study outlines the experimental procedures for synthesizing Cu-NH2-MIL-125(Ti), preparing PVDF composites, and details on the photocatalytic experiments. The practical application of our approach can be further expanded to enhance the photocatalytic performance of PVDF-protected unstable MOFs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信