{"title":"Regulating tumor cells to awaken T cell antitumor function and enhance melanoma immunotherapy.","authors":"Weihan Zhang, Shijun Yuan, Zipeng Zhang, Shunli Fu, Shujun Liu, Jinhu Liu, Qingping Ma, Zhenxing Xia, Panpan Gu, Shuying Gao, Zhiyue Zhang, Xinke Zhang, Yongjun Liu, Na Zhang","doi":"10.1016/j.biomaterials.2024.123034","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor cells transmit various immunosuppressive signals and induce a dysfunctional state in T cells, which essentially leads to immune escape and tumor progression. However, developing effective strategies to counteract the domestication of T cells by tumor cells remains a challenge. Here, we prepared pH-responsive lipid nanoparticles (NL/PLDs) co-loaded with PCSK9 shRNA, lonidamine (LND), and low-dose doxorubicin (DOX). NL/PLDs can awaken domesticated T cells function by sending pro-activation, pro-recognition, and pro-killing signals by increasing tumor immunogenicity, increasing the expression of major histocompatibility complex I (MHC-I) on tumor cells, and alleviating the suppression effect of tumor-secreted lactic acid (LA) on the T cell effector function, respectively. In melanoma-bearing mice, NL/PLDs effectively relieved tumor immunosuppressive microenvironment (TIME) and enhanced the antitumor immunity mediated by CD8<sup>+</sup> T cells. Furthermore, when combined with aPD-1, NL/PLDs demonstrated strong antitumor effects and increased immunotherapeutic efficacy. This regulatory strategy provides new insights for enhancing immunotherapy by regulating tumor immunosuppressive signals and shows significant potential for clinical tumor treatment.</p>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"316 ","pages":"123034"},"PeriodicalIF":12.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biomaterials.2024.123034","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Tumor cells transmit various immunosuppressive signals and induce a dysfunctional state in T cells, which essentially leads to immune escape and tumor progression. However, developing effective strategies to counteract the domestication of T cells by tumor cells remains a challenge. Here, we prepared pH-responsive lipid nanoparticles (NL/PLDs) co-loaded with PCSK9 shRNA, lonidamine (LND), and low-dose doxorubicin (DOX). NL/PLDs can awaken domesticated T cells function by sending pro-activation, pro-recognition, and pro-killing signals by increasing tumor immunogenicity, increasing the expression of major histocompatibility complex I (MHC-I) on tumor cells, and alleviating the suppression effect of tumor-secreted lactic acid (LA) on the T cell effector function, respectively. In melanoma-bearing mice, NL/PLDs effectively relieved tumor immunosuppressive microenvironment (TIME) and enhanced the antitumor immunity mediated by CD8+ T cells. Furthermore, when combined with aPD-1, NL/PLDs demonstrated strong antitumor effects and increased immunotherapeutic efficacy. This regulatory strategy provides new insights for enhancing immunotherapy by regulating tumor immunosuppressive signals and shows significant potential for clinical tumor treatment.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.