Mechanism and Kinetics of Hydration of CuSO4·H2O in the Presence of an Intermediate Step.

IF 3.2 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Crystal Growth & Design Pub Date : 2024-12-09 eCollection Date: 2024-12-18 DOI:10.1021/acs.cgd.4c00589
Martina Cotti, Amelie Stahlbuhk, Hartmut R Fischer, Michael Steiger, Olaf C G Adan, Henk P Huinink
{"title":"Mechanism and Kinetics of Hydration of CuSO<sub>4</sub>·H<sub>2</sub>O in the Presence of an Intermediate Step.","authors":"Martina Cotti, Amelie Stahlbuhk, Hartmut R Fischer, Michael Steiger, Olaf C G Adan, Henk P Huinink","doi":"10.1021/acs.cgd.4c00589","DOIUrl":null,"url":null,"abstract":"<p><p>The hydration of salt hydrates is often described as a solution mediated nucleation and growth mechanism, occurring between a reagent and a product in thermodynamic equilibrium with each other. If a system possesses more than one hydrate phase, the kinetic pathway may involve additional mechanisms due to the formation of intermediate hydrate species. We elected CuSO<sub>4</sub> as our model system and analyzed the pathway leading from CuSO<sub>4</sub>·H<sub>2</sub>O (C1H) to CuSO<sub>4</sub>·5H<sub>2</sub>O (C5H), while CuSO<sub>4</sub>·3H<sub>2</sub>O (C3H) being a possible intermediate. We found that C1H hydration is mediated by the formation of C3H and that C5H does not nucleate directly from C1H, at the studied conditions. The hydration pathway therefore is characterized by the same mechanism occurring twice, nucleation and growth of C3H and nucleation and growth of C5H. Analysis of the hydration kinetics of C1H revealed that C5H nucleates rapidly from C3H, as if the metastability of C3H was reduced when starting from C1H. Therefore, we concluded that the hydration kinetics of C1H are probably controlled by the growth process of C5H. Despite being controlled by a single reaction process, we show that a single front 1D diffusion model is insufficient to describe the reaction kinetics at the tablet level. Understanding of these complex transformations is necessary to evaluate the suitability of these reactions for application, in particular with respect to the achieved power output.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"24 24","pages":"10082-10093"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11660158/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.cgd.4c00589","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/18 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The hydration of salt hydrates is often described as a solution mediated nucleation and growth mechanism, occurring between a reagent and a product in thermodynamic equilibrium with each other. If a system possesses more than one hydrate phase, the kinetic pathway may involve additional mechanisms due to the formation of intermediate hydrate species. We elected CuSO4 as our model system and analyzed the pathway leading from CuSO4·H2O (C1H) to CuSO4·5H2O (C5H), while CuSO4·3H2O (C3H) being a possible intermediate. We found that C1H hydration is mediated by the formation of C3H and that C5H does not nucleate directly from C1H, at the studied conditions. The hydration pathway therefore is characterized by the same mechanism occurring twice, nucleation and growth of C3H and nucleation and growth of C5H. Analysis of the hydration kinetics of C1H revealed that C5H nucleates rapidly from C3H, as if the metastability of C3H was reduced when starting from C1H. Therefore, we concluded that the hydration kinetics of C1H are probably controlled by the growth process of C5H. Despite being controlled by a single reaction process, we show that a single front 1D diffusion model is insufficient to describe the reaction kinetics at the tablet level. Understanding of these complex transformations is necessary to evaluate the suitability of these reactions for application, in particular with respect to the achieved power output.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信