Leonardo R de Almeida, Antônio S N Aguiar, Alex B R M da Anunciação, Giulio D C d'Oliveira, Wesley F Vaz, Jean M F Custódio, Caridad N Pérez, Hamilton B Napolitano
{"title":"Three Dihydroquinolin-4-one Derivatives as Potential Biodiesel Additives: From the Molecular Structure to Machine Learning Approach.","authors":"Leonardo R de Almeida, Antônio S N Aguiar, Alex B R M da Anunciação, Giulio D C d'Oliveira, Wesley F Vaz, Jean M F Custódio, Caridad N Pérez, Hamilton B Napolitano","doi":"10.1021/acsomega.4c05742","DOIUrl":null,"url":null,"abstract":"<p><p>Biodiesel offers an alternative to fossil fuels, primarily because it is derived from renewable sources, with the potential to mitigate issues such as pollutant and greenhouse gas emissions, resource scarcity, and the market instability of petroleum derivatives. However, lower durability and stability pose challenges. To address this, researchers worldwide are exploring technologies that employ specific molecules to slow down biodiesel's oxidation process, thereby preserving its key physicochemical properties. This study investigates heterocyclic dihydroquinolinone derivatives as potential additives to enhance the oxidative stability of diesel-biodiesel blends. Comprehensive structural and computational analyses were carried out by density functional theory to investigate the reactivity aspects of these compounds as potential additive candidates. The supramolecular arrangements were predominantly stabilized by weak molecular interactions, such as C-H···O and C-H···π, which are associated with antioxidant and antibacterial properties. We demonstrate that these groups can act as electron-donating or electron-withdrawing substituents. We explored frontier molecular orbitals, which provide insights into chemical reactivity, acidity, basicity, and the best oxidizing and reducing agents. Finally, the molecular chemical potential maps indicate the nucleophilic and electrophilic regions and the Fukui indices show the sites of nucleophilic, electrophilic, and radical attacks. This comprehensive study paves the way to understanding how dihydroquinolinone-based compounds serve as alternatives for fuel additives.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 50","pages":"49188-49204"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656225/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsomega.4c05742","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/17 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Biodiesel offers an alternative to fossil fuels, primarily because it is derived from renewable sources, with the potential to mitigate issues such as pollutant and greenhouse gas emissions, resource scarcity, and the market instability of petroleum derivatives. However, lower durability and stability pose challenges. To address this, researchers worldwide are exploring technologies that employ specific molecules to slow down biodiesel's oxidation process, thereby preserving its key physicochemical properties. This study investigates heterocyclic dihydroquinolinone derivatives as potential additives to enhance the oxidative stability of diesel-biodiesel blends. Comprehensive structural and computational analyses were carried out by density functional theory to investigate the reactivity aspects of these compounds as potential additive candidates. The supramolecular arrangements were predominantly stabilized by weak molecular interactions, such as C-H···O and C-H···π, which are associated with antioxidant and antibacterial properties. We demonstrate that these groups can act as electron-donating or electron-withdrawing substituents. We explored frontier molecular orbitals, which provide insights into chemical reactivity, acidity, basicity, and the best oxidizing and reducing agents. Finally, the molecular chemical potential maps indicate the nucleophilic and electrophilic regions and the Fukui indices show the sites of nucleophilic, electrophilic, and radical attacks. This comprehensive study paves the way to understanding how dihydroquinolinone-based compounds serve as alternatives for fuel additives.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.