Structure-Based QSAR Modeling of RET Kinase Inhibitors from 49 Different 5,6-Fused Bicyclic Heteroaromatic Cores to Patent-Driven Validation.

IF 3.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ACS Omega Pub Date : 2024-12-06 eCollection Date: 2024-12-17 DOI:10.1021/acsomega.4c07843
Sumin Jin, Surendra Kumar, Mi-Hyun Kim
{"title":"Structure-Based QSAR Modeling of RET Kinase Inhibitors from 49 Different 5,6-Fused Bicyclic Heteroaromatic Cores to Patent-Driven Validation.","authors":"Sumin Jin, Surendra Kumar, Mi-Hyun Kim","doi":"10.1021/acsomega.4c07843","DOIUrl":null,"url":null,"abstract":"<p><p>RET receptor tyrosine kinase is crucial for nerve and tissue development but can be an important oncogenic driver. This study focuses on exploring the design principles of potent RET inhibitors through molecular docking and 3D-QSAR modeling of 5,6-fused bicyclic heteroaromatic derivatives. First of all, RET inhibitors of 49 different bicyclic substructures were collected from five different data sources and selected through molecular docking simulations. QSAR models were built from the 3399 conformers of 952 RET inhibitors using the partial least-squares method and statistically evaluated. The optimal QSAR model exhibited high predictive performance, with <i>R</i> <sup>2</sup> (of training data) and <i>Q</i> <sup>2</sup> (of test data) values of 0.801 and 0.794, respectively, effectively predicting known inhibitors. The optimal model was doubly verified by patent-filed RET inhibitors as the out-of-set data to demonstrate acceptable residual analysis results. Moreover, feature importance analysis of the QSAR model outlined the impact of substituent characteristics on the inhibitory activity within the 5,6-fused bicyclic heteroaromatic core structures. Furthermore, the relationship between structure and inhibitory activity was successfully applied to the RET screening of known clinical and nonclinical kinase inhibitors to afford accurate off-target prediction.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 50","pages":"49662-49673"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656239/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsomega.4c07843","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/17 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

RET receptor tyrosine kinase is crucial for nerve and tissue development but can be an important oncogenic driver. This study focuses on exploring the design principles of potent RET inhibitors through molecular docking and 3D-QSAR modeling of 5,6-fused bicyclic heteroaromatic derivatives. First of all, RET inhibitors of 49 different bicyclic substructures were collected from five different data sources and selected through molecular docking simulations. QSAR models were built from the 3399 conformers of 952 RET inhibitors using the partial least-squares method and statistically evaluated. The optimal QSAR model exhibited high predictive performance, with R 2 (of training data) and Q 2 (of test data) values of 0.801 and 0.794, respectively, effectively predicting known inhibitors. The optimal model was doubly verified by patent-filed RET inhibitors as the out-of-set data to demonstrate acceptable residual analysis results. Moreover, feature importance analysis of the QSAR model outlined the impact of substituent characteristics on the inhibitory activity within the 5,6-fused bicyclic heteroaromatic core structures. Furthermore, the relationship between structure and inhibitory activity was successfully applied to the RET screening of known clinical and nonclinical kinase inhibitors to afford accurate off-target prediction.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信