Jayaramulu Kolleboyina, Gobbilla Sai Kumar, Deepak Kumar, Aditya Thakur, Mukul Gupta, Praveen Kumar Velpula, Rabindranath Lo
{"title":"Single-Atom based Metal-Organic Frameworks for Efficient C-S Cross-Coupling.","authors":"Jayaramulu Kolleboyina, Gobbilla Sai Kumar, Deepak Kumar, Aditya Thakur, Mukul Gupta, Praveen Kumar Velpula, Rabindranath Lo","doi":"10.1002/asia.202401578","DOIUrl":null,"url":null,"abstract":"<p><p>Single-atom-based Metal-Organic Frameworks (MOFs) hold great promising candidates for heterogeneous catalysis, demonstrating outstanding catalytic activity and exceptional product selectivity. This is attributed to their optimal atom utilization, high surface energy, and the presence of unsaturated coordination environments. Here in, we have developed a nickel single-atom catalyst (UiO-66/Ni) featuring Ni single atoms covalently attached to defect-engineered Zr-oxide clusters within the stable UiO-66 framework, synthesized via a straightforward solution impregnation method. The resulting UiO-66/Ni catalyst, with a uniform distribution of nickel single atoms, exhibits remarkable stability and demonstrates exceptional performance in C-S coupling reactions of various aryl thiols and aryl halides, yielding desired products with outstanding catalytic activity and selectivity, regardless of electron-donating or withdrawing substituents at room temperature and maintains robust stability even after six cycles. Advanced density functional theory calculations have been exploited to clarify the mechanism of C-S cross-coupling for examining the influence of substituents on the aromatic ring of aryl thiols through free energy profiles. The collaborative action of nickel single atoms and the defects of UiO-66 during the oxidative addition and reductive elimination steps facilitated the formation of energetically favorable C-S cross-coupling products.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202401578"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202401578","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Single-atom-based Metal-Organic Frameworks (MOFs) hold great promising candidates for heterogeneous catalysis, demonstrating outstanding catalytic activity and exceptional product selectivity. This is attributed to their optimal atom utilization, high surface energy, and the presence of unsaturated coordination environments. Here in, we have developed a nickel single-atom catalyst (UiO-66/Ni) featuring Ni single atoms covalently attached to defect-engineered Zr-oxide clusters within the stable UiO-66 framework, synthesized via a straightforward solution impregnation method. The resulting UiO-66/Ni catalyst, with a uniform distribution of nickel single atoms, exhibits remarkable stability and demonstrates exceptional performance in C-S coupling reactions of various aryl thiols and aryl halides, yielding desired products with outstanding catalytic activity and selectivity, regardless of electron-donating or withdrawing substituents at room temperature and maintains robust stability even after six cycles. Advanced density functional theory calculations have been exploited to clarify the mechanism of C-S cross-coupling for examining the influence of substituents on the aromatic ring of aryl thiols through free energy profiles. The collaborative action of nickel single atoms and the defects of UiO-66 during the oxidative addition and reductive elimination steps facilitated the formation of energetically favorable C-S cross-coupling products.
期刊介绍:
Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics.
Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews.
A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal.
Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).