Photothermal Miniemulsion Polymerization by Amphiphilic Gold Nanoclusters.

IF 3.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Ning Yang, Yuetong Kang, Jiaren Liu, Jiaxi Wang, Yonghui Zan, Xuan Zhao, Xiaoyu Wang, Lidong Li
{"title":"Photothermal Miniemulsion Polymerization by Amphiphilic Gold Nanoclusters.","authors":"Ning Yang, Yuetong Kang, Jiaren Liu, Jiaxi Wang, Yonghui Zan, Xuan Zhao, Xiaoyu Wang, Lidong Li","doi":"10.1002/asia.202401194","DOIUrl":null,"url":null,"abstract":"<p><p>Gold nanoclusters (AuNCs), which are approximately 2 nm in size, exhibit distinctive photophysical and catalytic properties, but their performance is often compromised by environmental factors. To mitigate these challenges, attempts have been made to incorporate AuNCs into polymer matrices to enhance their stability. Miniemulsion polymerization has proven to be an effective method for fabricating organic-inorganic composites. Here, we present a facile photothermal-assisted method for miniemulsion polymerization utilizing AuNCs, which serve as co-stabilizers of the emulsion and photothermal conversion agents. By grafting tryptamine onto hydrophilic AuNCs, the amphiphilic AuNCs were spontaneously adsorbed at the styrene/water interfaces, resulting in stable nanoemulsions. Taking advantage of the photothermal properties of surface-bounded AuNCs, rapid polymerization of styrene within the nanoemulsion was successfully initiated by external laser irradiation. The prepared nanocomposites inherited the photothermal activity of AuNCs and exhibited good photothermal stability and repeatability. This approach not only facilitates remote control of chemical reactions, but also optimizes the distribution of AuNCs within the final polymer matrix, thereby enabling the efficient synthesis of nanocomposites while exploiting the unique photofunctionality of AuNCs.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202401194"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202401194","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Gold nanoclusters (AuNCs), which are approximately 2 nm in size, exhibit distinctive photophysical and catalytic properties, but their performance is often compromised by environmental factors. To mitigate these challenges, attempts have been made to incorporate AuNCs into polymer matrices to enhance their stability. Miniemulsion polymerization has proven to be an effective method for fabricating organic-inorganic composites. Here, we present a facile photothermal-assisted method for miniemulsion polymerization utilizing AuNCs, which serve as co-stabilizers of the emulsion and photothermal conversion agents. By grafting tryptamine onto hydrophilic AuNCs, the amphiphilic AuNCs were spontaneously adsorbed at the styrene/water interfaces, resulting in stable nanoemulsions. Taking advantage of the photothermal properties of surface-bounded AuNCs, rapid polymerization of styrene within the nanoemulsion was successfully initiated by external laser irradiation. The prepared nanocomposites inherited the photothermal activity of AuNCs and exhibited good photothermal stability and repeatability. This approach not only facilitates remote control of chemical reactions, but also optimizes the distribution of AuNCs within the final polymer matrix, thereby enabling the efficient synthesis of nanocomposites while exploiting the unique photofunctionality of AuNCs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemistry - An Asian Journal
Chemistry - An Asian Journal 化学-化学综合
CiteScore
7.00
自引率
2.40%
发文量
535
审稿时长
1.3 months
期刊介绍: Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics. Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews. A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal. Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信