Filippo Romeggio, Rasmus Bischoff, Clara B Møller, Victor L Jensen, Esteban Gioria, Rikke Egeberg Tankard, Rasmus S Nielsen, Ole Hansen, Ib Chorkendorff, Jakob Kibsgaard, Christian D Damsgaard
{"title":"Room-Temperature Deposition of δ-Ni<sub>5</sub>Ga<sub>3</sub> Thin Films and Nanoparticles via Magnetron Sputtering.","authors":"Filippo Romeggio, Rasmus Bischoff, Clara B Møller, Victor L Jensen, Esteban Gioria, Rikke Egeberg Tankard, Rasmus S Nielsen, Ole Hansen, Ib Chorkendorff, Jakob Kibsgaard, Christian D Damsgaard","doi":"10.1021/acsomega.4c08405","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetron sputtering is a versatile method for investigating model system catalysts thanks to its simplicity, reproducibility, and chemical-free synthesis process. It has recently emerged as a promising technique for synthesizing δ-Ni<sub>5</sub>Ga<sub>3</sub> thin films. Physically deposited thin films have significant potential to clarify certain aspects of catalysts by eliminating parameters such as particle size dependence, metal-support interactions, and the presence of surface ligands. In this work, we demonstrate the potential of magnetron sputtering for the synthesis and analysis of thin film catalysts, using Ni<sub>5</sub>Ga<sub>3</sub> as a model system. Initially, deposition conditions were optimized by varying the deposition pressure, followed by an investigation of the temperature effects, aiming to map a structure zone dependence on temperature and pressure as in the Thornton model. The evolution of film crystallinity was monitored using a combination of grazing incidence X-ray diffraction (GI-XRD) and high-resolution scanning electron microscopy (HR-SEM). Additionally, ultrathin films were synthesized and annealed in H<sub>2</sub> at high temperatures to demonstrate the possibility of producing size-controlled nanoparticles by adjusting the annealing conditions. This work demonstrates the full potential of magnetron sputtering as a technique for synthesizing model system catalysts in various forms, opening new avenues for the research and development of additional catalytic systems.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 50","pages":"49759-49766"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656207/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsomega.4c08405","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/17 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetron sputtering is a versatile method for investigating model system catalysts thanks to its simplicity, reproducibility, and chemical-free synthesis process. It has recently emerged as a promising technique for synthesizing δ-Ni5Ga3 thin films. Physically deposited thin films have significant potential to clarify certain aspects of catalysts by eliminating parameters such as particle size dependence, metal-support interactions, and the presence of surface ligands. In this work, we demonstrate the potential of magnetron sputtering for the synthesis and analysis of thin film catalysts, using Ni5Ga3 as a model system. Initially, deposition conditions were optimized by varying the deposition pressure, followed by an investigation of the temperature effects, aiming to map a structure zone dependence on temperature and pressure as in the Thornton model. The evolution of film crystallinity was monitored using a combination of grazing incidence X-ray diffraction (GI-XRD) and high-resolution scanning electron microscopy (HR-SEM). Additionally, ultrathin films were synthesized and annealed in H2 at high temperatures to demonstrate the possibility of producing size-controlled nanoparticles by adjusting the annealing conditions. This work demonstrates the full potential of magnetron sputtering as a technique for synthesizing model system catalysts in various forms, opening new avenues for the research and development of additional catalytic systems.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.