Biomass-derived multiatom-doped carbon dots for the photocatalytic reduction of Cr(VI) and precipitation of Cr(III)

IF 10.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Gunture, Tae Yoon Lee
{"title":"Biomass-derived multiatom-doped carbon dots for the photocatalytic reduction of Cr(VI) and precipitation of Cr(III)","authors":"Gunture, Tae Yoon Lee","doi":"10.1038/s41545-024-00426-2","DOIUrl":null,"url":null,"abstract":"The release of heavy metal ions, especially hexavalent chromium [Cr(VI)], from industrial processes poses significant health and environmental risks. Cr(VI) does not readily degrade but can be reduced to the less toxic trivalent form [Cr(III)] that exhibits lower adsorption, making it easier to manage and remove from environmental systems. This paper proposes a single-step solvothermal method to synthesize fluorescent multiatom-doped (N, K, Cl, Mg, and Ca) carbon dots (MACDs) from Kalanchoe pinnata leaves (carbon precursor) and ethanol (solvent). These MACDs serve as effective photocatalysts for Cr(VI) reduction under one sun illumination (AM 1.5 G conditions). The reaction achieved a 91% Cr(VI) removal from a 20 ppm deionized water solution in 420 min and complete removal (100%) in an acidic solution with the same initial concentration in 120 min. The MACDs demonstrated excellent photocatalytic performance across tap, river, and lake water. These biomass-derived MACDs demonstrate strong potential for effective Cr-contaminated water remediation.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":" ","pages":"1-11"},"PeriodicalIF":10.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00426-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41545-024-00426-2","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The release of heavy metal ions, especially hexavalent chromium [Cr(VI)], from industrial processes poses significant health and environmental risks. Cr(VI) does not readily degrade but can be reduced to the less toxic trivalent form [Cr(III)] that exhibits lower adsorption, making it easier to manage and remove from environmental systems. This paper proposes a single-step solvothermal method to synthesize fluorescent multiatom-doped (N, K, Cl, Mg, and Ca) carbon dots (MACDs) from Kalanchoe pinnata leaves (carbon precursor) and ethanol (solvent). These MACDs serve as effective photocatalysts for Cr(VI) reduction under one sun illumination (AM 1.5 G conditions). The reaction achieved a 91% Cr(VI) removal from a 20 ppm deionized water solution in 420 min and complete removal (100%) in an acidic solution with the same initial concentration in 120 min. The MACDs demonstrated excellent photocatalytic performance across tap, river, and lake water. These biomass-derived MACDs demonstrate strong potential for effective Cr-contaminated water remediation.

Abstract Image

生物质源多原子掺杂碳点光催化还原Cr(VI)和沉淀Cr(III)
工业过程释放的重金属离子,特别是六价铬[Cr(VI)],构成重大的健康和环境风险。Cr(VI)不易降解,但可以还原为毒性较小的三价形式[Cr(III)],其吸附性较低,使其更容易管理和从环境系统中去除。提出了一种单步溶剂热法制备多原子掺杂(N、K、Cl、Mg、Ca)碳点(MACDs)的方法。这些macd在一次阳光照射(AM 1.5 G条件下)下作为Cr(VI)还原的有效光催化剂。在20 ppm的去离子水溶液中,反应时间为420 min, Cr(VI)去除率为91%;在相同初始浓度的酸性溶液中,反应时间为120 min, Cr(VI)去除率为100%。macd在自来水、河流和湖水中表现出优异的光催化性能。这些生物质来源的macd显示了有效修复cr污染水的强大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Clean Water
npj Clean Water Environmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍: npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信