In situ techniques for aqueous quinone-mediated electrochemical carbon capture and release

Kiana Amini, Thomas Cochard, Yan Jing, Jordan D. Sosa, Dawei Xi, Maia Alberts, Michael S. Emanuel, Emily F. Kerr, Roy G. Gordon, Michael J. Aziz
{"title":"In situ techniques for aqueous quinone-mediated electrochemical carbon capture and release","authors":"Kiana Amini, Thomas Cochard, Yan Jing, Jordan D. Sosa, Dawei Xi, Maia Alberts, Michael S. Emanuel, Emily F. Kerr, Roy G. Gordon, Michael J. Aziz","doi":"10.1038/s44286-024-00153-y","DOIUrl":null,"url":null,"abstract":"Here we elucidate the intricate interplay between the nucleophilicity swing and pH swing mechanisms in aqueous quinone-mediated carbon capture systems, showcasing the critical role of understanding this interplay in the material discovery cycle. This insight prompts the development of two in situ techniques. The first technique employs in situ reference electrodes and capitalizes on discernible voltage signature differences between quinones and quinone–CO2 adducts, allowing for the quantification of the isolated contributions of the two mechanisms. The second method is developed based on our finding that the adduct form of the quinone exhibits a fluorescence emission from an incident light at wavelengths distinct from the fluorescence of the reduced form. Thus, we introduce a noninvasive, in situ approach using fluorescence microscopy, providing the capability to distinguish species with subsecond time resolution at single-digit micrometer resolution. This technique holds promise for studying quinone-based systems for carbon capture and beyond. In an aqueous quinone-mediated system, both pH swing and nucleophilicity swing mechanisms contribute to CO2 capture, but traditional measurement methods report only the combined contributions, without quantifying their relative contributions. Here the authors introduce thermodynamic and kinetic analyses coupled with two in situ experimental techniques to quantify the contributions of these mechanisms.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 12","pages":"774-786"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44286-024-00153-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Here we elucidate the intricate interplay between the nucleophilicity swing and pH swing mechanisms in aqueous quinone-mediated carbon capture systems, showcasing the critical role of understanding this interplay in the material discovery cycle. This insight prompts the development of two in situ techniques. The first technique employs in situ reference electrodes and capitalizes on discernible voltage signature differences between quinones and quinone–CO2 adducts, allowing for the quantification of the isolated contributions of the two mechanisms. The second method is developed based on our finding that the adduct form of the quinone exhibits a fluorescence emission from an incident light at wavelengths distinct from the fluorescence of the reduced form. Thus, we introduce a noninvasive, in situ approach using fluorescence microscopy, providing the capability to distinguish species with subsecond time resolution at single-digit micrometer resolution. This technique holds promise for studying quinone-based systems for carbon capture and beyond. In an aqueous quinone-mediated system, both pH swing and nucleophilicity swing mechanisms contribute to CO2 capture, but traditional measurement methods report only the combined contributions, without quantifying their relative contributions. Here the authors introduce thermodynamic and kinetic analyses coupled with two in situ experimental techniques to quantify the contributions of these mechanisms.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信