{"title":"Study of Wind pattern at the incursion site of Pangong Tso near Merak Village","authors":"Belur Ravindra, Deepangkar Sarkar, Shantikumar Singh Ningombam, Stanzin Tundup, Namgyal Dorje, Angchuk Dorje, Prabhu Kesavan, Dipankar Banerjee","doi":"10.1007/s10686-024-09972-6","DOIUrl":null,"url":null,"abstract":"<div><p>This study analyzes twelve years of wind speed and direction data collected at the proposed National Large Solar Telescope (NLST) site near Pangong Tso, Merak village, Leh-Ladakh. A weather station from Campbell Scientific Instruments, installed in 2008, has been continuously monitoring meteorological parameters, including wind speed and direction. The data reveals a consistent pattern of predominantly northwest winds, particularly during morning hours, with speeds generally below 5 m/s. While seasonal variations influence wind speed and direction, the overall trend remains stable. To assess the site’s suitability for astronomical observations, we compared high-altitude wind speeds at various renowned astronomical sites using reanalysis data from 2008 to 2020. Strong correlations were observed between surface and high-altitude wind speeds at 10 m, 50 m, and 500 m. Statistical analysis of 200-mbar pressure level wind speeds identified La Palma as the most favorable site with a wind speed of 18.76 m/s. La Silla, on the other hand, exhibited the highest wind speed at 34.76 m/s. Merak’s estimated wind speed of 30.99 m/s, coupled with its favorable wind direction and low surface wind speeds, suggests its potential as a promising site for astronomical observations.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10686-024-09972-6","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study analyzes twelve years of wind speed and direction data collected at the proposed National Large Solar Telescope (NLST) site near Pangong Tso, Merak village, Leh-Ladakh. A weather station from Campbell Scientific Instruments, installed in 2008, has been continuously monitoring meteorological parameters, including wind speed and direction. The data reveals a consistent pattern of predominantly northwest winds, particularly during morning hours, with speeds generally below 5 m/s. While seasonal variations influence wind speed and direction, the overall trend remains stable. To assess the site’s suitability for astronomical observations, we compared high-altitude wind speeds at various renowned astronomical sites using reanalysis data from 2008 to 2020. Strong correlations were observed between surface and high-altitude wind speeds at 10 m, 50 m, and 500 m. Statistical analysis of 200-mbar pressure level wind speeds identified La Palma as the most favorable site with a wind speed of 18.76 m/s. La Silla, on the other hand, exhibited the highest wind speed at 34.76 m/s. Merak’s estimated wind speed of 30.99 m/s, coupled with its favorable wind direction and low surface wind speeds, suggests its potential as a promising site for astronomical observations.
期刊介绍:
Many new instruments for observing astronomical objects at a variety of wavelengths have been and are continually being developed. Furthermore, a vast amount of effort is being put into the development of new techniques for data analysis in order to cope with great streams of data collected by these instruments.
Experimental Astronomy acts as a medium for the publication of papers of contemporary scientific interest on astrophysical instrumentation and methods necessary for the conduct of astronomy at all wavelength fields.
Experimental Astronomy publishes full-length articles, research letters and reviews on developments in detection techniques, instruments, and data analysis and image processing techniques. Occasional special issues are published, giving an in-depth presentation of the instrumentation and/or analysis connected with specific projects, such as satellite experiments or ground-based telescopes, or of specialized techniques.