Xieyang Zhang, Jiayu Zuo, Qing Li, Bin Liu, Wangfang Du
{"title":"Experimental Study on the Enhancement of Boiling Heat Transfer Performance Under the Condition of the Downward Heating Surface by an Electric Field","authors":"Xieyang Zhang, Jiayu Zuo, Qing Li, Bin Liu, Wangfang Du","doi":"10.1007/s12217-024-10154-4","DOIUrl":null,"url":null,"abstract":"<div><p>This paper experimentally investigated the impact of the electric field strength (<i>E</i>), electrode installation heights (<i>H</i>), and the electrode shape on enhanced pool boiling heat transfer performance under a downward heating surface with an electric field. It is observed that the critical heat flux (CHF) generally increases with increasing electric field strength. For instance, for the mesh electrode, the CHF is increased by 100.0%, 240.0%, 340.0%, and 440.0% at <i>E</i> = 0.35 × 10<sup>6</sup> V/m, 0.70 × 10<sup>6</sup> V/m, 1.05 × 10<sup>6</sup> V/m, and 1.40 × 10<sup>6</sup> V/m, respectively, compared to <i>E</i> = 0 V/m. Furthermore, the electrodes hinder the detachment of vapor bubbles, which becomes more pronounced when the electrode installation height is low. At the same time, the more micro-ribs of the electrodes and the denser the distribution, the more uniform the electric field generated. Under this condition, the “pinch-off effect” caused by the non-uniform electric field is reduced, which is more conducive to enhancing boiling heat transfer performance. Ultimately, at <i>H</i> = 5.0 mm and <i>E</i> = 1.40 × 10<sup>6</sup> V/m, the CHF with grid electrodes improved by 101.1% compared with the horizontally upward without the electric field, which is a superior combination of working conditions and suggests that a more optimistic boiling heat transfer performance can be obtained in microgravity. This work provides guidance for enhancing boiling heat transfer in microgravity by an electric field.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"37 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-024-10154-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper experimentally investigated the impact of the electric field strength (E), electrode installation heights (H), and the electrode shape on enhanced pool boiling heat transfer performance under a downward heating surface with an electric field. It is observed that the critical heat flux (CHF) generally increases with increasing electric field strength. For instance, for the mesh electrode, the CHF is increased by 100.0%, 240.0%, 340.0%, and 440.0% at E = 0.35 × 106 V/m, 0.70 × 106 V/m, 1.05 × 106 V/m, and 1.40 × 106 V/m, respectively, compared to E = 0 V/m. Furthermore, the electrodes hinder the detachment of vapor bubbles, which becomes more pronounced when the electrode installation height is low. At the same time, the more micro-ribs of the electrodes and the denser the distribution, the more uniform the electric field generated. Under this condition, the “pinch-off effect” caused by the non-uniform electric field is reduced, which is more conducive to enhancing boiling heat transfer performance. Ultimately, at H = 5.0 mm and E = 1.40 × 106 V/m, the CHF with grid electrodes improved by 101.1% compared with the horizontally upward without the electric field, which is a superior combination of working conditions and suggests that a more optimistic boiling heat transfer performance can be obtained in microgravity. This work provides guidance for enhancing boiling heat transfer in microgravity by an electric field.
期刊介绍:
Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity.
Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges).
Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are:
− materials science
− fluid mechanics
− process engineering
− physics
− chemistry
− heat and mass transfer
− gravitational biology
− radiation biology
− exobiology and astrobiology
− human physiology