Abdellah Bouguenna, Driss Bouguenna, Amine Boudghene Stambouli, Aasif Mohammad Bhat
{"title":"Impact of geometrical parameters on AlGaN/GaN heterostructure MOS-HEMT biosensor","authors":"Abdellah Bouguenna, Driss Bouguenna, Amine Boudghene Stambouli, Aasif Mohammad Bhat","doi":"10.1007/s10825-024-02247-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we present the study of AlGaN/GaN metal–oxide–semiconductor high-electron-mobility transistor (MOS-HEMT) biosensors for protein detection. We study the effects of technological parameters including the gate width, gate length, AlGaN layer thickness, oxide thickness layer, and oxide type including HfO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, and SiO<sub>2</sub> on the output characteristics, sensitivity of the MOS-HEMT biosensors, and <i>C</i>–<i>V</i> characteristics. The model developed is compared with experimental data to verify its validity. The AlGaN/GaN bio-MOS-HEMTs show the greatest change in drain current of 208.08 mA with <i>W</i><sub>g</sub> = 100 µm, <i>L</i><sub>g</sub>= 0.3 µm, <i>d</i><sub>AlGaN</sub>=15 nm, and SiO<sub>2</sub> oxide thickness of 25 nm at protein permittivity of 2.5.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02247-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we present the study of AlGaN/GaN metal–oxide–semiconductor high-electron-mobility transistor (MOS-HEMT) biosensors for protein detection. We study the effects of technological parameters including the gate width, gate length, AlGaN layer thickness, oxide thickness layer, and oxide type including HfO2, Al2O3, and SiO2 on the output characteristics, sensitivity of the MOS-HEMT biosensors, and C–V characteristics. The model developed is compared with experimental data to verify its validity. The AlGaN/GaN bio-MOS-HEMTs show the greatest change in drain current of 208.08 mA with Wg = 100 µm, Lg= 0.3 µm, dAlGaN=15 nm, and SiO2 oxide thickness of 25 nm at protein permittivity of 2.5.
期刊介绍:
he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered.
In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.