Computational analysis of Yamada–Ota and Xue models for surface tension gradient impact on radiative 3D flow of trihybrid nanofluid with Soret–Dufour effects
Sayer Obaid Alharbi, Munawar Abbas, Ahmed Babeker Elhag, Abdullah A. Faqihi, Ali Akgül
{"title":"Computational analysis of Yamada–Ota and Xue models for surface tension gradient impact on radiative 3D flow of trihybrid nanofluid with Soret–Dufour effects","authors":"Sayer Obaid Alharbi, Munawar Abbas, Ahmed Babeker Elhag, Abdullah A. Faqihi, Ali Akgül","doi":"10.1007/s10404-024-02777-1","DOIUrl":null,"url":null,"abstract":"<div><p>This article discusses the significance of Soret and Dufour, non-uniform heat generation, activation energy on radiative 3D flow of trihybrid nanofluid over a sheet with Marangoni convection. The energy equation takes into consideration the impacts of the heat generation, while the concentration equation takes activation energy into account. This trihybrid nanofluid is based on ethylene glycol and contains nanoparticles of titanium dioxide <span>\\((Ti{O}_{2})\\)</span>, cobalt ferrite <span>\\((CoF{e}_{2}O)\\)</span>, and aluminum oxide <span>\\((\\text{A}{l}_{2}{O}_{3})\\)</span>. For the case of trihybrid nanoparticles, the Yamada–Ota and Xue nanofluid models have been modified. This model is helpful for optimizing heating and cooling systems in fields like energy systems, microelectronics, and aerospace engineering where exact control of thermal properties is essential. By adjusting the characteristics of nanofluids, it also enhances heat transfer rates, which is a critical component in the development of solar collectors and high-efficiency heat exchangers. By using the necessary similarity transformations, non-linear ODEs are obtained from the controlling PDEs. The shooting method (BVP4c) can be utilized to solve this system of highly nonlinear equations numerically. As the surface tension gradient parameter is increased, the velocity distribution, mass transfer, and heat transfer rates all increase but the performance of the thermal and solutal profiles is opposite.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"29 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-024-02777-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
This article discusses the significance of Soret and Dufour, non-uniform heat generation, activation energy on radiative 3D flow of trihybrid nanofluid over a sheet with Marangoni convection. The energy equation takes into consideration the impacts of the heat generation, while the concentration equation takes activation energy into account. This trihybrid nanofluid is based on ethylene glycol and contains nanoparticles of titanium dioxide \((Ti{O}_{2})\), cobalt ferrite \((CoF{e}_{2}O)\), and aluminum oxide \((\text{A}{l}_{2}{O}_{3})\). For the case of trihybrid nanoparticles, the Yamada–Ota and Xue nanofluid models have been modified. This model is helpful for optimizing heating and cooling systems in fields like energy systems, microelectronics, and aerospace engineering where exact control of thermal properties is essential. By adjusting the characteristics of nanofluids, it also enhances heat transfer rates, which is a critical component in the development of solar collectors and high-efficiency heat exchangers. By using the necessary similarity transformations, non-linear ODEs are obtained from the controlling PDEs. The shooting method (BVP4c) can be utilized to solve this system of highly nonlinear equations numerically. As the surface tension gradient parameter is increased, the velocity distribution, mass transfer, and heat transfer rates all increase but the performance of the thermal and solutal profiles is opposite.
期刊介绍:
Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include:
1.000 Fundamental principles of micro- and nanoscale phenomena like,
flow, mass transport and reactions
3.000 Theoretical models and numerical simulation with experimental and/or analytical proof
4.000 Novel measurement & characterization technologies
5.000 Devices (actuators and sensors)
6.000 New unit-operations for dedicated microfluidic platforms
7.000 Lab-on-a-Chip applications
8.000 Microfabrication technologies and materials
Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).