{"title":"Toxicity of copper oxide nanoparticles on the Asian clam Corbicula fluminea using multiple biomarkers","authors":"Mona F. Fol, Shereen K. Zahyan, Dawlat A. Sayed","doi":"10.1007/s11051-024-06192-z","DOIUrl":null,"url":null,"abstract":"<div><p>The extensive use of nanoparticles (NPs) increases the possibility of their deposition into water ecosystems and endangering aquatic life. Thus, this study aimed to assess the acute effect of copper oxide nanoparticles (CuO NPs) on the freshwater clam, <i>Corbicula fluminea</i>. Biochemical, histopathological, and genotoxic biomarkers were examined to achieve this purpose. Clams were exposed to 1.8 and 6.6 mg/l of CuO NPs for 96 h. By comparison with control clams, a significant increase in both malondialdehyde (MDA) and nitric oxide (NO) levels occurred with a concomitant decrease in catalase (CAT) and acetylcholinesterase (AChE) activities and reduced glutathione (GSH) content in clam’s tissues treated with both sub-lethal concentrations. Histopathological alterations were observed in the mantle, gills, digestive glands, and gonads of <i>C. fluminea</i> exposed to both sub-lethal concentrations and the histopathological indices for all the reaction patterns in the examined tissues were significantly higher in clams exposed to the higher concentration of CuO NPs (6.6 mg/l). DNA damage evaluated by changes in RAPD profiles. These findings revealed that CuO NPs have a toxicological impact on <i>Corbicula fluminea</i> even after a short period of exposure, thereby immense care should be taken regarding its use.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"27 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoparticle Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11051-024-06192-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The extensive use of nanoparticles (NPs) increases the possibility of their deposition into water ecosystems and endangering aquatic life. Thus, this study aimed to assess the acute effect of copper oxide nanoparticles (CuO NPs) on the freshwater clam, Corbicula fluminea. Biochemical, histopathological, and genotoxic biomarkers were examined to achieve this purpose. Clams were exposed to 1.8 and 6.6 mg/l of CuO NPs for 96 h. By comparison with control clams, a significant increase in both malondialdehyde (MDA) and nitric oxide (NO) levels occurred with a concomitant decrease in catalase (CAT) and acetylcholinesterase (AChE) activities and reduced glutathione (GSH) content in clam’s tissues treated with both sub-lethal concentrations. Histopathological alterations were observed in the mantle, gills, digestive glands, and gonads of C. fluminea exposed to both sub-lethal concentrations and the histopathological indices for all the reaction patterns in the examined tissues were significantly higher in clams exposed to the higher concentration of CuO NPs (6.6 mg/l). DNA damage evaluated by changes in RAPD profiles. These findings revealed that CuO NPs have a toxicological impact on Corbicula fluminea even after a short period of exposure, thereby immense care should be taken regarding its use.
期刊介绍:
The objective of the Journal of Nanoparticle Research is to disseminate knowledge of the physical, chemical and biological phenomena and processes in structures that have at least one lengthscale ranging from molecular to approximately 100 nm (or submicron in some situations), and exhibit improved and novel properties that are a direct result of their small size.
Nanoparticle research is a key component of nanoscience, nanoengineering and nanotechnology.
The focus of the Journal is on the specific concepts, properties, phenomena, and processes related to particles, tubes, layers, macromolecules, clusters and other finite structures of the nanoscale size range. Synthesis, assembly, transport, reactivity, and stability of such structures are considered. Development of in-situ and ex-situ instrumentation for characterization of nanoparticles and their interfaces should be based on new principles for probing properties and phenomena not well understood at the nanometer scale. Modeling and simulation may include atom-based quantum mechanics; molecular dynamics; single-particle, multi-body and continuum based models; fractals; other methods suitable for modeling particle synthesis, assembling and interaction processes. Realization and application of systems, structures and devices with novel functions obtained via precursor nanoparticles is emphasized. Approaches may include gas-, liquid-, solid-, and vacuum-based processes, size reduction, chemical- and bio-self assembly. Contributions include utilization of nanoparticle systems for enhancing a phenomenon or process and particle assembling into hierarchical structures, as well as formulation and the administration of drugs. Synergistic approaches originating from different disciplines and technologies, and interaction between the research providers and users in this field, are encouraged.