TALKER: A Task-Activated Language Model Based Knowledge-Extension Reasoning System

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Jiabin Lou;Rongye Shi;Yuxin Lin;Qunbo Wang;Wenjun Wu
{"title":"TALKER: A Task-Activated Language Model Based Knowledge-Extension Reasoning System","authors":"Jiabin Lou;Rongye Shi;Yuxin Lin;Qunbo Wang;Wenjun Wu","doi":"10.1109/LRA.2024.3511434","DOIUrl":null,"url":null,"abstract":"Training drones to execute complex collective tasks via multi-agent reinforcement learning presents significant challenges. To address these challenges, this letter introduces the Task-Activated Language model-based Knowledge-Extension Reasoning system. Specifically, we trained drones in two fine-grained skills and developed an action primitive library based on these capabilities, enabling a hierarchical approach to managing complex swarm operations. Leveraging this primitive library, we employ large language models to perform task planning, continuously refining the planning outcomes based on external user feedback. Successful task codes are temporarily stored within the action primitive library, with their utilization being authorized based on internal feedback from maintainers. We defined this process as knowledge expansion. In addition, more refined customized prompts are generated based on task descriptions and the action primitive documentation, a mechanism referred to as Task Activation. Our system synergistically integrates task activation and knowledge expansion mechanisms, enabling continuous evolution through human feedback to effectively manage extensive swarms in the execution of complex collective tasks. Experimental results demonstrate the superior performance of our system in various drone swarm tasks, including collaborative search, object tracking, cooperative interception, and aerial patrol.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 2","pages":"1026-1033"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10776775/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Training drones to execute complex collective tasks via multi-agent reinforcement learning presents significant challenges. To address these challenges, this letter introduces the Task-Activated Language model-based Knowledge-Extension Reasoning system. Specifically, we trained drones in two fine-grained skills and developed an action primitive library based on these capabilities, enabling a hierarchical approach to managing complex swarm operations. Leveraging this primitive library, we employ large language models to perform task planning, continuously refining the planning outcomes based on external user feedback. Successful task codes are temporarily stored within the action primitive library, with their utilization being authorized based on internal feedback from maintainers. We defined this process as knowledge expansion. In addition, more refined customized prompts are generated based on task descriptions and the action primitive documentation, a mechanism referred to as Task Activation. Our system synergistically integrates task activation and knowledge expansion mechanisms, enabling continuous evolution through human feedback to effectively manage extensive swarms in the execution of complex collective tasks. Experimental results demonstrate the superior performance of our system in various drone swarm tasks, including collaborative search, object tracking, cooperative interception, and aerial patrol.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信