Sustainable Synthesis of Single-Phase Ba3MgSi2O8 Nanoparticles Using Sporopollenin for Fructose Syrup Production: DFT and Quantitative NMR Insights on Glucose Isomerization

IF 7.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Raina Sharma, Tamilmani Selvaraj, Arun Kumar Solanki, Jithin John Varghese* and Govindasamy Jayamurugan*, 
{"title":"Sustainable Synthesis of Single-Phase Ba3MgSi2O8 Nanoparticles Using Sporopollenin for Fructose Syrup Production: DFT and Quantitative NMR Insights on Glucose Isomerization","authors":"Raina Sharma,&nbsp;Tamilmani Selvaraj,&nbsp;Arun Kumar Solanki,&nbsp;Jithin John Varghese* and Govindasamy Jayamurugan*,&nbsp;","doi":"10.1021/acssuschemeng.4c0767010.1021/acssuschemeng.4c07670","DOIUrl":null,"url":null,"abstract":"<p >Producing high fructose syrup (HFS) is essential for both the platform chemicals and food industries. While enzyme-based methods are commonly used, their limited availability has led to growing interest in alkali metal catalysts. However, a complete understanding of these catalysts’ mechanism is still needed. Traditional alkaline earth metal oxides suffer stability issues due to metal leaching from solid surfaces. While Ba<sub>3</sub>MgSi<sub>2</sub>O<sub>8</sub> (BMS) is well-studied for its phosphor nature, its use as a Lewis base catalyst has not been explored. We present a novel method for the synthesis of BMS nanoparticles and demonstrate its application as a Lewis base for glucose to fructose (GLU-FRU) isomerization. In contrast to the conventional high-temperature solid-state grinding (1225 °C) of BaCO<sub>3</sub>, MgO, and SiO<sub>2</sub>, we synthesized crystalline single-phase BMS nanoparticles from BaCl<sub>2</sub> and hydrous magnesium silicates encapsulated in sporopollenin (BMS-ES2), utilizing a coprecipitation method at 400 °C. We attained a remarkable 62% glucose conversion rate, resulting in 56% fructose yield with 90.3% selectivity at 90 °C in 60 min at 25% glucose loading in H<sub>2</sub>O, marking the highest reported values among catalysts containing alkaline earth metals in water. Further investigation using NMR and DFT revealed a proton exchange mechanism favoring Ba(OH)<sub>2</sub> due to water dissociation at Ba sites over Mg sites. The catalyst displayed excellent reusability, with a minimal 2–4% yield decrease per cycle over five cycles. These results not only provide insights into sustainable synthesis methods for Ba<sub>3</sub>MgSi<sub>2</sub>O<sub>8</sub> but also illuminate its catalytic properties for base-catalyzed reactions and the proton exchange mechanism involved in GLU-FRU isomerization. Ba<sub>3</sub>MgSi<sub>2</sub>O<sub>8</sub> nanoparticles are sustainably synthesized from biomass waste and catalyze gram scale GLU-FRU conversion in water with excellent selectivity and reusability.</p>","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"12 51","pages":"18399–18411 18399–18411"},"PeriodicalIF":7.1000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssuschemeng.4c07670","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Producing high fructose syrup (HFS) is essential for both the platform chemicals and food industries. While enzyme-based methods are commonly used, their limited availability has led to growing interest in alkali metal catalysts. However, a complete understanding of these catalysts’ mechanism is still needed. Traditional alkaline earth metal oxides suffer stability issues due to metal leaching from solid surfaces. While Ba3MgSi2O8 (BMS) is well-studied for its phosphor nature, its use as a Lewis base catalyst has not been explored. We present a novel method for the synthesis of BMS nanoparticles and demonstrate its application as a Lewis base for glucose to fructose (GLU-FRU) isomerization. In contrast to the conventional high-temperature solid-state grinding (1225 °C) of BaCO3, MgO, and SiO2, we synthesized crystalline single-phase BMS nanoparticles from BaCl2 and hydrous magnesium silicates encapsulated in sporopollenin (BMS-ES2), utilizing a coprecipitation method at 400 °C. We attained a remarkable 62% glucose conversion rate, resulting in 56% fructose yield with 90.3% selectivity at 90 °C in 60 min at 25% glucose loading in H2O, marking the highest reported values among catalysts containing alkaline earth metals in water. Further investigation using NMR and DFT revealed a proton exchange mechanism favoring Ba(OH)2 due to water dissociation at Ba sites over Mg sites. The catalyst displayed excellent reusability, with a minimal 2–4% yield decrease per cycle over five cycles. These results not only provide insights into sustainable synthesis methods for Ba3MgSi2O8 but also illuminate its catalytic properties for base-catalyzed reactions and the proton exchange mechanism involved in GLU-FRU isomerization. Ba3MgSi2O8 nanoparticles are sustainably synthesized from biomass waste and catalyze gram scale GLU-FRU conversion in water with excellent selectivity and reusability.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信