Enhanced Enantioselective Sensing of 1,1′-Bi-2-naphthol and Mandelic Acid by Proportional Fluorescence Sensor 3DOM Zn-MOF-74-l-Trp with Hierarchical Macro–Micropore Structure

IF 4.3 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Mengyun Lu, Xinwen Jia, Wenjing Zhang, Wuduo Zhao*, Ajuan Yu* and Gangfeng Ouyang, 
{"title":"Enhanced Enantioselective Sensing of 1,1′-Bi-2-naphthol and Mandelic Acid by Proportional Fluorescence Sensor 3DOM Zn-MOF-74-l-Trp with Hierarchical Macro–Micropore Structure","authors":"Mengyun Lu,&nbsp;Xinwen Jia,&nbsp;Wenjing Zhang,&nbsp;Wuduo Zhao*,&nbsp;Ajuan Yu* and Gangfeng Ouyang,&nbsp;","doi":"10.1021/acs.inorgchem.4c0446410.1021/acs.inorgchem.4c04464","DOIUrl":null,"url":null,"abstract":"<p >The enantioselective performance of porous chiral metal–organic frameworks (CMOFs) is closely related to the pore size and uniformity of easily accessible active sites. The chiral recognition efficiency of microporous CMOFs is hindered by the restricted diffusion of the guest. Hierarchical porous chiral CMOFs with multiple pore size regimes ranging from micropores to macropores have emerged as potential candidates in chiral separation applications. 3DOM Zn-MOF-74 crystalline porous material with ordered macro–micropore structure was prepared with a general bottom-up strategy by carrying out the controllable confined growth of Zn-MOF-74 precursor in a removable three-dimensional ordered macroporous (3DOM) polystyrene (PS) template. Then <span>l</span>-tryptophan ( <span>l</span> -Trp) was introduced into MOFs by the strategy of postsynthetic modifications, and finally, a chiral hierarchical porous functional material 3DOM Zn-MOF-74-<span>l</span>-Trp was successfully fabricated. Based on the two luminescent centers from the achiral ligand H<sub>4</sub>DOBC and chiral ligand <span>l</span>-Trp, the proportional fluorescence sensor 3DOM Zn-MOF-74-<span>l</span>-Trp was hopeful to be applied in the field of enantioselective fluorescence sensing. The enantioselectivity factor values of microporous M-Zn-MOF-74-<span>l</span>-Trp for 1,1′-bi-2-naphthol (Binol) and mandelic acid (MA) were 1.08 and 1.12, respectively. In comparison, the construction of hierarchical porous structure greatly enhanced the chiral recognition performance, which may be due to the improved mass-transfer efficiency of chiral guest molecules and highly swelled accessibility to the chiral recognition sites in this CMOF composite, making the enantioselectivity factor values correspondingly increased to 1.29 and 2.26, respectively.</p>","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"63 51","pages":"24374–24381 24374–24381"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c04464","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

The enantioselective performance of porous chiral metal–organic frameworks (CMOFs) is closely related to the pore size and uniformity of easily accessible active sites. The chiral recognition efficiency of microporous CMOFs is hindered by the restricted diffusion of the guest. Hierarchical porous chiral CMOFs with multiple pore size regimes ranging from micropores to macropores have emerged as potential candidates in chiral separation applications. 3DOM Zn-MOF-74 crystalline porous material with ordered macro–micropore structure was prepared with a general bottom-up strategy by carrying out the controllable confined growth of Zn-MOF-74 precursor in a removable three-dimensional ordered macroporous (3DOM) polystyrene (PS) template. Then l-tryptophan ( l -Trp) was introduced into MOFs by the strategy of postsynthetic modifications, and finally, a chiral hierarchical porous functional material 3DOM Zn-MOF-74-l-Trp was successfully fabricated. Based on the two luminescent centers from the achiral ligand H4DOBC and chiral ligand l-Trp, the proportional fluorescence sensor 3DOM Zn-MOF-74-l-Trp was hopeful to be applied in the field of enantioselective fluorescence sensing. The enantioselectivity factor values of microporous M-Zn-MOF-74-l-Trp for 1,1′-bi-2-naphthol (Binol) and mandelic acid (MA) were 1.08 and 1.12, respectively. In comparison, the construction of hierarchical porous structure greatly enhanced the chiral recognition performance, which may be due to the improved mass-transfer efficiency of chiral guest molecules and highly swelled accessibility to the chiral recognition sites in this CMOF composite, making the enantioselectivity factor values correspondingly increased to 1.29 and 2.26, respectively.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Chemistry
Inorganic Chemistry 化学-无机化学与核化学
CiteScore
7.60
自引率
13.00%
发文量
1960
审稿时长
1.9 months
期刊介绍: Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信