Enhanced Enantioselective Sensing of 1,1′-Bi-2-naphthol and Mandelic Acid by Proportional Fluorescence Sensor 3DOM Zn-MOF-74-l-Trp with Hierarchical Macro–Micropore Structure
{"title":"Enhanced Enantioselective Sensing of 1,1′-Bi-2-naphthol and Mandelic Acid by Proportional Fluorescence Sensor 3DOM Zn-MOF-74-l-Trp with Hierarchical Macro–Micropore Structure","authors":"Mengyun Lu, Xinwen Jia, Wenjing Zhang, Wuduo Zhao*, Ajuan Yu* and Gangfeng Ouyang, ","doi":"10.1021/acs.inorgchem.4c0446410.1021/acs.inorgchem.4c04464","DOIUrl":null,"url":null,"abstract":"<p >The enantioselective performance of porous chiral metal–organic frameworks (CMOFs) is closely related to the pore size and uniformity of easily accessible active sites. The chiral recognition efficiency of microporous CMOFs is hindered by the restricted diffusion of the guest. Hierarchical porous chiral CMOFs with multiple pore size regimes ranging from micropores to macropores have emerged as potential candidates in chiral separation applications. 3DOM Zn-MOF-74 crystalline porous material with ordered macro–micropore structure was prepared with a general bottom-up strategy by carrying out the controllable confined growth of Zn-MOF-74 precursor in a removable three-dimensional ordered macroporous (3DOM) polystyrene (PS) template. Then <span>l</span>-tryptophan ( <span>l</span> -Trp) was introduced into MOFs by the strategy of postsynthetic modifications, and finally, a chiral hierarchical porous functional material 3DOM Zn-MOF-74-<span>l</span>-Trp was successfully fabricated. Based on the two luminescent centers from the achiral ligand H<sub>4</sub>DOBC and chiral ligand <span>l</span>-Trp, the proportional fluorescence sensor 3DOM Zn-MOF-74-<span>l</span>-Trp was hopeful to be applied in the field of enantioselective fluorescence sensing. The enantioselectivity factor values of microporous M-Zn-MOF-74-<span>l</span>-Trp for 1,1′-bi-2-naphthol (Binol) and mandelic acid (MA) were 1.08 and 1.12, respectively. In comparison, the construction of hierarchical porous structure greatly enhanced the chiral recognition performance, which may be due to the improved mass-transfer efficiency of chiral guest molecules and highly swelled accessibility to the chiral recognition sites in this CMOF composite, making the enantioselectivity factor values correspondingly increased to 1.29 and 2.26, respectively.</p>","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"63 51","pages":"24374–24381 24374–24381"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c04464","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The enantioselective performance of porous chiral metal–organic frameworks (CMOFs) is closely related to the pore size and uniformity of easily accessible active sites. The chiral recognition efficiency of microporous CMOFs is hindered by the restricted diffusion of the guest. Hierarchical porous chiral CMOFs with multiple pore size regimes ranging from micropores to macropores have emerged as potential candidates in chiral separation applications. 3DOM Zn-MOF-74 crystalline porous material with ordered macro–micropore structure was prepared with a general bottom-up strategy by carrying out the controllable confined growth of Zn-MOF-74 precursor in a removable three-dimensional ordered macroporous (3DOM) polystyrene (PS) template. Then l-tryptophan ( l -Trp) was introduced into MOFs by the strategy of postsynthetic modifications, and finally, a chiral hierarchical porous functional material 3DOM Zn-MOF-74-l-Trp was successfully fabricated. Based on the two luminescent centers from the achiral ligand H4DOBC and chiral ligand l-Trp, the proportional fluorescence sensor 3DOM Zn-MOF-74-l-Trp was hopeful to be applied in the field of enantioselective fluorescence sensing. The enantioselectivity factor values of microporous M-Zn-MOF-74-l-Trp for 1,1′-bi-2-naphthol (Binol) and mandelic acid (MA) were 1.08 and 1.12, respectively. In comparison, the construction of hierarchical porous structure greatly enhanced the chiral recognition performance, which may be due to the improved mass-transfer efficiency of chiral guest molecules and highly swelled accessibility to the chiral recognition sites in this CMOF composite, making the enantioselectivity factor values correspondingly increased to 1.29 and 2.26, respectively.
期刊介绍:
Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.