Manping Qian, Ke Wang, Peng Yang, Yu Liu, Meng Li*, Chengxiao Zhang and Honglan Qi*,
{"title":"Nonemissive Iridium(III) Solvent Complex as a Self-Reporting Photosensitizer for Monitoring Phototherapeutic Efficacy in a “Signal on” Mode","authors":"Manping Qian, Ke Wang, Peng Yang, Yu Liu, Meng Li*, Chengxiao Zhang and Honglan Qi*, ","doi":"10.1021/cbmi.4c0004210.1021/cbmi.4c00042","DOIUrl":null,"url":null,"abstract":"<p >Photodynamic therapy (PDT) has long been receiving increasing attention for the minimally invasive treatment of cancer. The performance of PDT depends on the photophysical and biological properties of photosensitizers (PSs). The always-on fluorescence signal of conventional PSs makes it difficult to real-time monitor phototherapeutic efficacy in the PDT process. Therefore, functional PSs with good photodynamic therapy effect and self-reporting properties are highly desired. Here, two nonemissive iridium(III) solvent complexes, [(dfppy)<sub>2</sub>Ir(DMSO)]Cl (Ir-DMSO, dfppy = 2,4-difluorophenyl)pyridine, DMSO = dimethyl sulfoxide) and [(dfppy)<sub>2</sub>Ir(ACN)]Cl (Ir-ACN, ACN = acetonitrile) as PSs, were synthesized. Both of them exhibit intense high-energy absorption bands, low photoluminescence (PL) emission, and low dark toxicity. Thanks to the lower dark toxicity of Ir-DMSO, we chose it as a PS for further PDT. In this work, Ir-DMSO functions as a specific PL “signal on” PS for self-reporting therapeutic efficacy during its own PDT process. Colocalization experiments indicated that Ir-DMSO accumulated in the endoplasmic reticulum and mitochondria. Under light irradiation, Ir-DMSO not only exhibited the ability to kill cancer cells but also presented a “signal on” PL response toward cell death. During Ir-DMSO-induced PDT, cell death modality was further investigated and immunogenic cell death was revealed, in which main hallmarks, including ROS generation, upregulation of surface-exposed calreticulin, high-mobility group box 1, and adenosine triphosphate secretion, were observed. Thanks to the specific coordination reaction between Ir-DMSO and histidine (His)/His-containing proteins, the phototherapeutic efficacy can be monitored in real time without other signal probes. This work provides a new and promising strategy for the development of PSs with self-reporting ability, which is of great importance for imaging-guided PDT.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 12","pages":"808–816 808–816"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.4c00042","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbmi.4c00042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Photodynamic therapy (PDT) has long been receiving increasing attention for the minimally invasive treatment of cancer. The performance of PDT depends on the photophysical and biological properties of photosensitizers (PSs). The always-on fluorescence signal of conventional PSs makes it difficult to real-time monitor phototherapeutic efficacy in the PDT process. Therefore, functional PSs with good photodynamic therapy effect and self-reporting properties are highly desired. Here, two nonemissive iridium(III) solvent complexes, [(dfppy)2Ir(DMSO)]Cl (Ir-DMSO, dfppy = 2,4-difluorophenyl)pyridine, DMSO = dimethyl sulfoxide) and [(dfppy)2Ir(ACN)]Cl (Ir-ACN, ACN = acetonitrile) as PSs, were synthesized. Both of them exhibit intense high-energy absorption bands, low photoluminescence (PL) emission, and low dark toxicity. Thanks to the lower dark toxicity of Ir-DMSO, we chose it as a PS for further PDT. In this work, Ir-DMSO functions as a specific PL “signal on” PS for self-reporting therapeutic efficacy during its own PDT process. Colocalization experiments indicated that Ir-DMSO accumulated in the endoplasmic reticulum and mitochondria. Under light irradiation, Ir-DMSO not only exhibited the ability to kill cancer cells but also presented a “signal on” PL response toward cell death. During Ir-DMSO-induced PDT, cell death modality was further investigated and immunogenic cell death was revealed, in which main hallmarks, including ROS generation, upregulation of surface-exposed calreticulin, high-mobility group box 1, and adenosine triphosphate secretion, were observed. Thanks to the specific coordination reaction between Ir-DMSO and histidine (His)/His-containing proteins, the phototherapeutic efficacy can be monitored in real time without other signal probes. This work provides a new and promising strategy for the development of PSs with self-reporting ability, which is of great importance for imaging-guided PDT.
期刊介绍:
Chemical & Biomedical Imaging is a peer-reviewed open access journal devoted to the publication of cutting-edge research papers on all aspects of chemical and biomedical imaging. This interdisciplinary field sits at the intersection of chemistry physics biology materials engineering and medicine. The journal aims to bring together researchers from across these disciplines to address cutting-edge challenges of fundamental research and applications.Topics of particular interest include but are not limited to:Imaging of processes and reactionsImaging of nanoscale microscale and mesoscale materialsImaging of biological interactions and interfacesSingle-molecule and cellular imagingWhole-organ and whole-body imagingMolecular imaging probes and contrast agentsBioluminescence chemiluminescence and electrochemiluminescence imagingNanophotonics and imagingChemical tools for new imaging modalitiesChemical and imaging techniques in diagnosis and therapyImaging-guided drug deliveryAI and machine learning assisted imaging