Coordinated Na+ Diffusion and Multiscale Interfacial Engineering of Polymer Electrolyte for Room-Temperature Solid Sodium Metal Batteries

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yuxiang Guo, Jiacheng Liu, Ahu Shao, Lu Cheng, Jiawen Tang, Yaxin Zhang, Zhiqiao Wang, Yunsong Li, Yingche Wang, Helin Wang, Chunwei Li, Ting Liu, Xiaodong Zhao, Yue Ma
{"title":"Coordinated Na+ Diffusion and Multiscale Interfacial Engineering of Polymer Electrolyte for Room-Temperature Solid Sodium Metal Batteries","authors":"Yuxiang Guo, Jiacheng Liu, Ahu Shao, Lu Cheng, Jiawen Tang, Yaxin Zhang, Zhiqiao Wang, Yunsong Li, Yingche Wang, Helin Wang, Chunwei Li, Ting Liu, Xiaodong Zhao, Yue Ma","doi":"10.1002/aenm.202405104","DOIUrl":null,"url":null,"abstract":"Thin-layer composite polymer electrolytes (CPEs) provide a safer alternative to flammable liquid electrolytes for all-solid-state sodium metallic batteries (ASSMBs) prototyping. However, conventional CPE designs suffer from insufficient ionic conductivities, oxidation upon high-voltage and uncontrolled dendrite growth. Herein, an interpenetrating approach by incorporating an optimized amount of acrylamide (AM) monomers polymerized within polyethylene oxide (PEO) matrix is proposed. The amide groups within tangled PEO/poly(acrylamide) (PAM) segments facilitate the NaTFSI salt dissociation through the coordination between CO═Na<sup>+</sup> and N─H/TFSI<sup>−</sup> interactions, meanwhile boosting Na<sup>+</sup> conduction along the ethylene oxide chains. Integrated with bacterial cellulose scaffold for mechanical reinforcement, the CPE membrane reconciles the tensile strength, ionic conductance and transference number. Robotic-arm controlled spray coating applies 4,4′-(Hexafluoroisopropylidene)diphthalic anhydride (6FDA) and 1,2-dibromobenzene (1,2-DBB) onto opposite sides of the PEO/PAM-BC membrane. The electron-withdrawing 6FDA layer promotes a NaF-rich cathode interface with 4.74 V tolerance, while the electron-accepting 1,2-DBB creates a NaBr-rich layer that mitigates the Na<sup>+</sup> diffusion barrier. In the ASSMB configuration, the prototype demonstrates 85.4% capacity retention over 500 cycles at room-temperature and wide-temperature-range adaptability from 0 to 80 °C. Transmission-mode X-ray diffraction reveals reversible lattice breathing of the paired cathode, which highlights the synergistic Na diffusion and stabilized interfaces across scales for the practical CPE design.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"284 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202405104","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Thin-layer composite polymer electrolytes (CPEs) provide a safer alternative to flammable liquid electrolytes for all-solid-state sodium metallic batteries (ASSMBs) prototyping. However, conventional CPE designs suffer from insufficient ionic conductivities, oxidation upon high-voltage and uncontrolled dendrite growth. Herein, an interpenetrating approach by incorporating an optimized amount of acrylamide (AM) monomers polymerized within polyethylene oxide (PEO) matrix is proposed. The amide groups within tangled PEO/poly(acrylamide) (PAM) segments facilitate the NaTFSI salt dissociation through the coordination between CO═Na+ and N─H/TFSI interactions, meanwhile boosting Na+ conduction along the ethylene oxide chains. Integrated with bacterial cellulose scaffold for mechanical reinforcement, the CPE membrane reconciles the tensile strength, ionic conductance and transference number. Robotic-arm controlled spray coating applies 4,4′-(Hexafluoroisopropylidene)diphthalic anhydride (6FDA) and 1,2-dibromobenzene (1,2-DBB) onto opposite sides of the PEO/PAM-BC membrane. The electron-withdrawing 6FDA layer promotes a NaF-rich cathode interface with 4.74 V tolerance, while the electron-accepting 1,2-DBB creates a NaBr-rich layer that mitigates the Na+ diffusion barrier. In the ASSMB configuration, the prototype demonstrates 85.4% capacity retention over 500 cycles at room-temperature and wide-temperature-range adaptability from 0 to 80 °C. Transmission-mode X-ray diffraction reveals reversible lattice breathing of the paired cathode, which highlights the synergistic Na diffusion and stabilized interfaces across scales for the practical CPE design.

Abstract Image

室温固体金属钠电池聚合物电解质钠离子协同扩散及多尺度界面工程
薄层复合聚合物电解质(cpe)为全固态金属钠电池(assmb)的原型设计提供了一种比易燃液体电解质更安全的替代品。然而,传统的CPE设计存在离子电导率不足、高压氧化和不受控制的枝晶生长等问题。本文提出了一种通过在聚氧聚乙烯(PEO)基体中加入优化量的丙烯酰胺(AM)单体的互穿方法。缠结的PEO/聚丙烯酰胺(PAM)片段内的酰胺基团通过CO = Na+和N─H/TFSI−相互作用之间的协调促进了NaTFSI盐的解离,同时促进了Na+沿环氧乙烷链的传导。结合细菌纤维素支架进行机械加固,CPE膜兼顾抗拉强度、离子电导和转移数。机械臂控制的喷涂涂层将4,4 ' -(六氟异丙基)二苯酐(6FDA)和1,2-二溴苯(1,2- dbb)应用于PEO/PAM-BC膜的两侧。吸电子的6FDA层形成了一个富nab的阴极界面,其容限为4.74 V,而吸电子的1,2- dbb层形成了一个富nab的阴极界面,减轻了Na+的扩散屏障。在ASSMB配置中,原型在室温下的500次循环中保持了85.4%的容量,并且在0到80°C的宽温度范围内具有适应性。透射模式x射线衍射揭示了配对阴极的可逆晶格呼吸,为实际CPE设计强调了协同Na扩散和跨尺度稳定界面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信