Study on the effects of non-uniformity of microbial growth on permeability changes in porous media

IF 4 2区 环境科学与生态学 Q1 WATER RESOURCES
Gengyang Zang, Lijian Huang, Shilin Wang, Taijia Lu, Yanfeng Gong, Liping Chen
{"title":"Study on the effects of non-uniformity of microbial growth on permeability changes in porous media","authors":"Gengyang Zang,&nbsp;Lijian Huang,&nbsp;Shilin Wang,&nbsp;Taijia Lu,&nbsp;Yanfeng Gong,&nbsp;Liping Chen","doi":"10.1016/j.advwatres.2024.104876","DOIUrl":null,"url":null,"abstract":"<div><div>Based on the assumption that biofilms are impermeable, we investigated the mechanism and law of the influence of microbial growth non-uniformity on the permeability of porous media in the artificial recharge of groundwater. The relationship between the total permeability of porous media and that of cross section was developed and the coupled Lattice Boltzmann Method-Immersed Moving Boundary-Cellular Automata (LBM-IBM-CA) model was used to simulate the non-uniform microbial growth in porous media. Quantitative analysis was conducted on the impact of the grain sparsity of porous media on the non-uniformity of relative porosity changes and permeability decrease caused by microbial growth. The non-uniformity of relative porosity changes was innovatively introduced into the porosity-permeability relationship. The main results are as follows. (1) The non-uniformity of nutrient concentration distribution in porous media is the fundamental reason for the non-uniformity of microbial growth and relative porosity changes. (2) The non-uniformity of relative porosity changes increases with microbial growth for the porous media with smaller grain sparsity. However, the opposite situation occurs for the porous media with larger grain sparsity. (3) In the event of clogging of porous media, the pressure drop caused by biological growth accounts for more than 90 % of the total pressure drop. (4) In the power-law relationship of the porosity-permeability, the index of non-uniformity of relative porosity changes is closely related to the sparsity of the grain at the entrance of porous media.</div></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"195 ","pages":"Article 104876"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Water Resources","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030917082400263X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Based on the assumption that biofilms are impermeable, we investigated the mechanism and law of the influence of microbial growth non-uniformity on the permeability of porous media in the artificial recharge of groundwater. The relationship between the total permeability of porous media and that of cross section was developed and the coupled Lattice Boltzmann Method-Immersed Moving Boundary-Cellular Automata (LBM-IBM-CA) model was used to simulate the non-uniform microbial growth in porous media. Quantitative analysis was conducted on the impact of the grain sparsity of porous media on the non-uniformity of relative porosity changes and permeability decrease caused by microbial growth. The non-uniformity of relative porosity changes was innovatively introduced into the porosity-permeability relationship. The main results are as follows. (1) The non-uniformity of nutrient concentration distribution in porous media is the fundamental reason for the non-uniformity of microbial growth and relative porosity changes. (2) The non-uniformity of relative porosity changes increases with microbial growth for the porous media with smaller grain sparsity. However, the opposite situation occurs for the porous media with larger grain sparsity. (3) In the event of clogging of porous media, the pressure drop caused by biological growth accounts for more than 90 % of the total pressure drop. (4) In the power-law relationship of the porosity-permeability, the index of non-uniformity of relative porosity changes is closely related to the sparsity of the grain at the entrance of porous media.
微生物生长不均匀性对多孔介质渗透率变化的影响研究
在假定生物膜不透水的前提下,研究了地下水人工回灌中微生物生长不均匀性对多孔介质渗透性影响的机理和规律。建立了多孔介质总渗透率与截面渗透率之间的关系,并采用晶格玻尔兹曼法-浸入式移动边界-元胞自动机(LBM-IBM-CA)耦合模型模拟了多孔介质中微生物的非均匀生长。定量分析了多孔介质的颗粒稀疏度对微生物生长引起的相对孔隙度变化和渗透率降低的不均匀性的影响。创新性地将相对孔隙度变化的非均匀性引入到孔渗关系中。主要结果如下:(1)多孔介质中营养物质浓度分布的不均匀性是微生物生长和相对孔隙度变化不均匀的根本原因。(2)对于颗粒稀疏度较小的多孔介质,相对孔隙度变化的不均匀性随着微生物的生长而增加。而对于颗粒稀疏度较大的多孔介质,则相反。(3)多孔介质发生堵塞时,生物生长引起的压降占总压降的90%以上。(4)在孔隙度-渗透率幂律关系中,相对孔隙度变化的非均匀性指标与多孔介质入口颗粒的稀疏度密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Water Resources
Advances in Water Resources 环境科学-水资源
CiteScore
9.40
自引率
6.40%
发文量
171
审稿时长
36 days
期刊介绍: Advances in Water Resources provides a forum for the presentation of fundamental scientific advances in the understanding of water resources systems. The scope of Advances in Water Resources includes any combination of theoretical, computational, and experimental approaches used to advance fundamental understanding of surface or subsurface water resources systems or the interaction of these systems with the atmosphere, geosphere, biosphere, and human societies. Manuscripts involving case studies that do not attempt to reach broader conclusions, research on engineering design, applied hydraulics, or water quality and treatment, as well as applications of existing knowledge that do not advance fundamental understanding of hydrological processes, are not appropriate for Advances in Water Resources. Examples of appropriate topical areas that will be considered include the following: • Surface and subsurface hydrology • Hydrometeorology • Environmental fluid dynamics • Ecohydrology and ecohydrodynamics • Multiphase transport phenomena in porous media • Fluid flow and species transport and reaction processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信