A thermo-poroelasticity model for partially saturated porous media

IF 5.7 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Zhi-He Jin, Michael L. Peterson
{"title":"A thermo-poroelasticity model for partially saturated porous media","authors":"Zhi-He Jin, Michael L. Peterson","doi":"10.1016/j.ijengsci.2024.104196","DOIUrl":null,"url":null,"abstract":"This work describes a thermo-poroelasticity model for a porous medium filled by two immiscible fluids in the framework of the Biot theory of poroelasticity. Local thermal equilibrium is assumed, i.e., the solid, the wetting fluid and the nonwetting fluid experience the same temperature variation in a continuum material particle. The constitutive relations in the present model include the thermally induced fluid content variations for both the wetting and nonwetting fluids. The model is employed to study the thermo-poroelastic responses of a borehole in a partially saturated, infinite porous medium subjected to a uniform temperature variation at the borehole boundary. The Laplace transform technique is used to obtain closed form, short time solutions for the thermally induced pore pressure and stress fields around the borehole. The analytical solutions indicate that the pore pressures of both the wetting and nonwetting fluids around the borehole at short times are characterized by the complementary error functions with the time scaled by partial saturation parameters as well as the thermal diffusivity of the porous medium. The numerical results for a porous medium dominantly filled by the wetting fluid indicate that the peak thermal pore pressure of the wetting fluid is much higher than that in the corresponding porous medium fully saturated by the wetting fluid while the thermal fluid content variation of the wetting fluid becomes lower due to partial saturation. Partial saturation also increases the thermal radial stress but the thermal hoop stress is relatively insensitive to partial saturation.","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"83 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ijengsci.2024.104196","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This work describes a thermo-poroelasticity model for a porous medium filled by two immiscible fluids in the framework of the Biot theory of poroelasticity. Local thermal equilibrium is assumed, i.e., the solid, the wetting fluid and the nonwetting fluid experience the same temperature variation in a continuum material particle. The constitutive relations in the present model include the thermally induced fluid content variations for both the wetting and nonwetting fluids. The model is employed to study the thermo-poroelastic responses of a borehole in a partially saturated, infinite porous medium subjected to a uniform temperature variation at the borehole boundary. The Laplace transform technique is used to obtain closed form, short time solutions for the thermally induced pore pressure and stress fields around the borehole. The analytical solutions indicate that the pore pressures of both the wetting and nonwetting fluids around the borehole at short times are characterized by the complementary error functions with the time scaled by partial saturation parameters as well as the thermal diffusivity of the porous medium. The numerical results for a porous medium dominantly filled by the wetting fluid indicate that the peak thermal pore pressure of the wetting fluid is much higher than that in the corresponding porous medium fully saturated by the wetting fluid while the thermal fluid content variation of the wetting fluid becomes lower due to partial saturation. Partial saturation also increases the thermal radial stress but the thermal hoop stress is relatively insensitive to partial saturation.
部分饱和多孔介质的热孔弹性模型
本文在Biot孔隙弹性理论的框架下,描述了由两种不混相流体填充的多孔介质的热孔隙弹性模型。假设局部热平衡,即固体、润湿流体和非润湿流体在连续介质中经历相同的温度变化。该模型中的本构关系包括了热诱导的润湿流体和非润湿流体的含量变化。利用该模型研究了部分饱和无限多孔介质中井眼边界温度均匀变化下的热孔弹性响应。利用拉普拉斯变换技术,得到了井周热致孔隙压力和应力场的封闭短时间解。解析解表明,在短时间内,井周润湿流体和非润湿流体的孔隙压力与部分饱和参数和多孔介质的热扩散率的时间标度呈互补误差函数。对主要由润湿流体填充的多孔介质的数值计算结果表明,润湿流体的热孔压力峰值远高于完全被润湿流体饱和的相应多孔介质,而润湿流体的热流体含量变化由于部分饱和而变小。部分饱和也增加了热径向应力,但热环应力对部分饱和相对不敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Engineering Science
International Journal of Engineering Science 工程技术-工程:综合
CiteScore
11.80
自引率
16.70%
发文量
86
审稿时长
45 days
期刊介绍: The International Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome. The primary goal of the new editors is to maintain high quality of publications. There will be a commitment to expediting the time taken for the publication of the papers. The articles that are sent for reviews will have names of the authors deleted with a view towards enhancing the objectivity and fairness of the review process. Articles that are devoted to the purely mathematical aspects without a discussion of the physical implications of the results or the consideration of specific examples are discouraged. Articles concerning material science should not be limited merely to a description and recording of observations but should contain theoretical or quantitative discussion of the results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信