Tiantong Zhang, Yao Nian, Bao Wang, Jinli Zhang, William A. Goddard Ⅲ, You Han
{"title":"Mechanistic insights into the evolution of Cu active center in acetylene hydrochlorination","authors":"Tiantong Zhang, Yao Nian, Bao Wang, Jinli Zhang, William A. Goddard Ⅲ, You Han","doi":"10.1016/j.jcat.2024.115926","DOIUrl":null,"url":null,"abstract":"Reserve–rich Cu–based catalysts are attractive for their favorable cost and sustainability and have exhibited extensive catalytic activities in the conversion of acetylene. However, the variable–valence and the presence of multi–species as well as the complexity of catalytic system pose challenges in deciphering the evolution process of Cu active center during working life–time. Herein, we investigated the evolution process of multivalent Cu–based species (Cu<sup>2+</sup>, Cu<sup>+</sup> and Cu<sup>0</sup>) as model active centers for acetylene hydrochlorination. The reduction of Cu<sup>2+</sup> driven by the activated carbon support and acetylene as well as oxidation of Cu<sup>0</sup> induced by hydrogen chloride, have been clarified for these species, both of which with the terminated Cu<sup>+</sup> species identified as the stable catalytic active center. Theoretical calculations have revealed the thermodynamics underlying the mechanism of species evolution determined by the covalent bond transition within Cu species, with comparisons of the differences in catalytic kinetics between sites. Moreover, a specific pathway for the catalytic decomposition of acetylene into coke deposits by Cu<sup>+</sup> species was proposed. This knowledge provides mechanistic insights into the evolution process of Cu active centers in acetylene hydrochlorination, paving the way for understanding catalytic behavior and accurate catalyst design for new improved Cu–catalyzed ethynylation reactions.","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"422 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcat.2024.115926","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Reserve–rich Cu–based catalysts are attractive for their favorable cost and sustainability and have exhibited extensive catalytic activities in the conversion of acetylene. However, the variable–valence and the presence of multi–species as well as the complexity of catalytic system pose challenges in deciphering the evolution process of Cu active center during working life–time. Herein, we investigated the evolution process of multivalent Cu–based species (Cu2+, Cu+ and Cu0) as model active centers for acetylene hydrochlorination. The reduction of Cu2+ driven by the activated carbon support and acetylene as well as oxidation of Cu0 induced by hydrogen chloride, have been clarified for these species, both of which with the terminated Cu+ species identified as the stable catalytic active center. Theoretical calculations have revealed the thermodynamics underlying the mechanism of species evolution determined by the covalent bond transition within Cu species, with comparisons of the differences in catalytic kinetics between sites. Moreover, a specific pathway for the catalytic decomposition of acetylene into coke deposits by Cu+ species was proposed. This knowledge provides mechanistic insights into the evolution process of Cu active centers in acetylene hydrochlorination, paving the way for understanding catalytic behavior and accurate catalyst design for new improved Cu–catalyzed ethynylation reactions.
期刊介绍:
The Journal of Catalysis publishes scholarly articles on both heterogeneous and homogeneous catalysis, covering a wide range of chemical transformations. These include various types of catalysis, such as those mediated by photons, plasmons, and electrons. The focus of the studies is to understand the relationship between catalytic function and the underlying chemical properties of surfaces and metal complexes.
The articles in the journal offer innovative concepts and explore the synthesis and kinetics of inorganic solids and homogeneous complexes. Furthermore, they discuss spectroscopic techniques for characterizing catalysts, investigate the interaction of probes and reacting species with catalysts, and employ theoretical methods.
The research presented in the journal should have direct relevance to the field of catalytic processes, addressing either fundamental aspects or applications of catalysis.