Acetochlor degradation in anaerobic microcosms with hyporheic sediments: Insights from biogeochemical data, transformation products, and isotope analysis
{"title":"Acetochlor degradation in anaerobic microcosms with hyporheic sediments: Insights from biogeochemical data, transformation products, and isotope analysis","authors":"Yuanzheng Zhang, Bing Wen, Yanyan Ni, Yunping Tong, Benyi Cao, Aiguo Zhou, Jian Xu, Yunde Liu","doi":"10.1016/j.watres.2024.123035","DOIUrl":null,"url":null,"abstract":"Steep redox gradients and diverse microbial communities in the anaerobic hyporheic zone create complex pathways for the degradation of herbicides, often linked to various terminal electron-accepting processes (TEAPs). Identifying the degradation pathways and their controlling factors under various TEAPs is of great significance for understanding mechanisms of water purification in the hyporheic zone. However, current research on herbicides in this area remains insufficient. Acetochlor, a commonly detected herbicide in aquatic environments, was the target contaminant in this study. Biogeochemical data, transformation products examination, and compound-specific isotope analysis (CSIA) were used to elucidate the degradation mechanisms of acetochlor under various TEAPs in anaerobic microcosms with hyporheic sediments. Results showed that carbon isotope fractionation of acetochlor during abiotic reduction by reduced sulfur species (ε<sub>bulk,C</sub> = −16.4 ± 0.4‰), such as HS<sup>–</sup> and S<sub>n</sub><sup>2–</sup>, was significantly larger than that observed during anaerobic biodegradation (ε<sub>bulk,C</sub> = −3.7 ± 0.4‰). This suggested the utility of CSIA in identifying biotic/abiotic degradation pathways of acetochlor in anaerobic environments. CSIA and transformation products examination revealed that biodegradation under Fe(III) reducing conditions and abiotic reduction by reduced sulfur species under SO<sub>4</sub><sup>2–</sup> reducing conditions were the main pathways for acetochlor degradation in anaerobic hyporheic sediments. TEAPs controlled the abilities and mechanisms of acetochlor degradation in different hyporheic sediments, which were highly associated with terminal electron acceptors (Fe(III) and SO<sub>4</sub><sup>2–</sup>), Fe(III) reducing bacteria (<em>Geobacter</em> and <em>Anaerolinea</em>), SO<sub>4</sub><sup>2–</sup> reducing bacteria (<em>Bacteroidetes_vadinHA17</em>), and tryptophan-like substances. This study provides important insights into the mechanisms of herbicides degradation in the hyporheic zone.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"24 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2024.123035","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Steep redox gradients and diverse microbial communities in the anaerobic hyporheic zone create complex pathways for the degradation of herbicides, often linked to various terminal electron-accepting processes (TEAPs). Identifying the degradation pathways and their controlling factors under various TEAPs is of great significance for understanding mechanisms of water purification in the hyporheic zone. However, current research on herbicides in this area remains insufficient. Acetochlor, a commonly detected herbicide in aquatic environments, was the target contaminant in this study. Biogeochemical data, transformation products examination, and compound-specific isotope analysis (CSIA) were used to elucidate the degradation mechanisms of acetochlor under various TEAPs in anaerobic microcosms with hyporheic sediments. Results showed that carbon isotope fractionation of acetochlor during abiotic reduction by reduced sulfur species (εbulk,C = −16.4 ± 0.4‰), such as HS– and Sn2–, was significantly larger than that observed during anaerobic biodegradation (εbulk,C = −3.7 ± 0.4‰). This suggested the utility of CSIA in identifying biotic/abiotic degradation pathways of acetochlor in anaerobic environments. CSIA and transformation products examination revealed that biodegradation under Fe(III) reducing conditions and abiotic reduction by reduced sulfur species under SO42– reducing conditions were the main pathways for acetochlor degradation in anaerobic hyporheic sediments. TEAPs controlled the abilities and mechanisms of acetochlor degradation in different hyporheic sediments, which were highly associated with terminal electron acceptors (Fe(III) and SO42–), Fe(III) reducing bacteria (Geobacter and Anaerolinea), SO42– reducing bacteria (Bacteroidetes_vadinHA17), and tryptophan-like substances. This study provides important insights into the mechanisms of herbicides degradation in the hyporheic zone.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.