Low-cost, Resilient, and Non-flammable Rechargeable Fe-ion Batteries with Scalable Fabrication and Long Cycle Life

IF 32.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yufan Zhang, Chi Ho Lee, Md Zahidul Islam, Joseph Kwon, Choongho Yu
{"title":"Low-cost, Resilient, and Non-flammable Rechargeable Fe-ion Batteries with Scalable Fabrication and Long Cycle Life","authors":"Yufan Zhang, Chi Ho Lee, Md Zahidul Islam, Joseph Kwon, Choongho Yu","doi":"10.1039/d4ee03350g","DOIUrl":null,"url":null,"abstract":"Aqueous Fe-ion batteries are largely unexplored due to their short cycle life despite the extremely low material cost. The working mechanisms are mostly undisclosed with only a few experimental studies. In this study, we demonstrate that our Fe-ion batteries can deliver an impressive specific capacity of 225 mAh/g at a relatively low 5 C rate and exhibited an extremely long cycle life of up to 27,000 cycles with a capacity retention of 82% at 15 C. Furthermore, the anode is simply a carbon steel foil (moderate purity Fe source) along with scalable cathodes and low-cost FeSO4 electrolyte, offering cost-effective solutions. Our theoretical study reveals Fe incorporation processes in the cathode and the corresponding voltage profiles during cycling, attributing mainly to the formation energy of Fe on the emptied N sites of polyaniline and structural deformations with the Fe attachment. Our batteries are shown to be free from fire and failure due to short circuits. With the manufacturing-friendly sandwich-type or 3D cylindrical cathodes eliminating multi-stack electrodes, our batteries have the potential to be cost-effective, long-lasting, and safe for stationary energy storage systems.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"125 1","pages":""},"PeriodicalIF":32.4000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ee03350g","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous Fe-ion batteries are largely unexplored due to their short cycle life despite the extremely low material cost. The working mechanisms are mostly undisclosed with only a few experimental studies. In this study, we demonstrate that our Fe-ion batteries can deliver an impressive specific capacity of 225 mAh/g at a relatively low 5 C rate and exhibited an extremely long cycle life of up to 27,000 cycles with a capacity retention of 82% at 15 C. Furthermore, the anode is simply a carbon steel foil (moderate purity Fe source) along with scalable cathodes and low-cost FeSO4 electrolyte, offering cost-effective solutions. Our theoretical study reveals Fe incorporation processes in the cathode and the corresponding voltage profiles during cycling, attributing mainly to the formation energy of Fe on the emptied N sites of polyaniline and structural deformations with the Fe attachment. Our batteries are shown to be free from fire and failure due to short circuits. With the manufacturing-friendly sandwich-type or 3D cylindrical cathodes eliminating multi-stack electrodes, our batteries have the potential to be cost-effective, long-lasting, and safe for stationary energy storage systems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy & Environmental Science
Energy & Environmental Science 化学-工程:化工
CiteScore
50.50
自引率
2.20%
发文量
349
审稿时长
2.2 months
期刊介绍: Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences." Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信