{"title":"The Preparation of Copper–Manganese Catalysts Using a Sequentially Feeding Microreactor","authors":"Xin Jiang, Bing Han, Jiawei Fu","doi":"10.1021/acs.iecr.4c03029","DOIUrl":null,"url":null,"abstract":"The Cu–Mn interaction in copper–manganese composite oxide catalysts is crucial for their catalytic oxidation activity of volatile organic compounds (VOCs). In this study, highly dispersed copper–manganese coprecipitates were synthesized using a microreactor, and the effects of feeding intervals on the structure of the precipitates and catalysts were investigated by means of X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The results indicate that sequential feeding can produce coprecipitates with better uniformity. An appropriate time difference between the Mn<sup>2+</sup> and Cu<sup>2+</sup> feeds can make the coprecipitate more uniform and enhance the Cu–Mn interactions in the catalyst. Higher ratios of both surface Mn<sup>3+</sup>/Mn<sup>4+</sup> and O<sub>latt</sub>/O<sub>ads</sub> are considered attributable to better catalytic performance.","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"11 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.iecr.4c03029","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The Cu–Mn interaction in copper–manganese composite oxide catalysts is crucial for their catalytic oxidation activity of volatile organic compounds (VOCs). In this study, highly dispersed copper–manganese coprecipitates were synthesized using a microreactor, and the effects of feeding intervals on the structure of the precipitates and catalysts were investigated by means of X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The results indicate that sequential feeding can produce coprecipitates with better uniformity. An appropriate time difference between the Mn2+ and Cu2+ feeds can make the coprecipitate more uniform and enhance the Cu–Mn interactions in the catalyst. Higher ratios of both surface Mn3+/Mn4+ and Olatt/Oads are considered attributable to better catalytic performance.
期刊介绍:
ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.